«Умная пыль»: технологии на грани фантастики. "умная пыль": облака микророботов Умная пыль нанотехнологии

Представьте мир, где беспроводные устройства размером с кристалл соли. Эти “лилипуты” оснащены автономным питанием и вычислительными мощностями. Кроме того, есть камеры и механизмы для беспроводной передачи данных. Такие микроэлектромеханические системы (MEMS) называются умная пыль. И скоро они могут “распорошиться” по соседству. Разбираемся, что это и где применяют “пылинки”.

Что может умная пыль

MEMS оснащены миниатюрными датчиками, которые могут уловить все — от колебаний света до вибрации температур. Из-за миниатюрности устройства могут оставаться подвешенными в пространстве, как частички пыли. Они могут:

  • собирать огромные массивы данных, в том числе ускорение, напряжение, давление, влажность, звук и другое;
  • обрабатывать все это с помощью встроенного компьютера;
  • хранить data в памяти;
  • передавать информацию по беспроводной связи в облако, базу или другим “пылинкам”.

3D-печать в микромасштабе

Печатать компонентов пыли на коммерчески доступном 3D-принтере сделает технологию доступной. Ранее мы подробно рассмотрели и применение технологии в разных сферах жизни человека.

Оптические линзы миниатюрных датчиков позволят получить изображения сверхвысокого качества. Сейчас мы даже не можем представить его.

Практическое применение умной пыли

Потенциал умной пыли в сборе информации об окружающей среде с невероятной детализацией повлияет на множество вещей. Это как умноженная на миллиарды технология Интернета вещей (IoT). Вот лишь несколько примеров практического применения умной пыли.

  • Тщательное наблюдение за с/х культурами, чтобы определить потребность в поливе, удобрении и борьбе с насекомыми.
  • Мониторинг оборудования, чтобы вовремя его обслуживать.
  • Определение недостатков и коррозии еще до сбоя системы.
  • Наблюдение за людьми и продуктами в целях безопасности.
  • Измерение всего, что можно измерить. И практически везде.
  • Контроль доставки продуктов от производителя до магазина, включая транспортировку любым способом.
  • Применение в медицине: диагностика без хирургического вмешательства. А еще — контроль устройств, которые помогают людям с ограниченными физическими возможностями взаимодействовать с инструментами, что помогают им жить самостоятельно.
  • Исследователи Калифорнийского университета в Беркли опубликовали статью о потенциале умной пыли. Если ее имплантировать так, чтобы она “припорошила” мозг, то можно получить обратную связь о его функциональности.

Чем опасна умная пыль

Все еще остаются проблемы, которые тормозят массовое применение умной пыли. Вот несколько из них.

Конфиденциальность

Эксперты обеспокоены проблемами конфиденциальности MEMS. Смарт устройства могут записать все, на что их запрограммировали. Из-за миниатюрного размера их сложно обнаружить. И тут можно включить фантазию на тему: что если умная пыль попадет в чужие руки…

Контроль

Миллиарды умных пылинок легко разлетаются над выбранной областью. А собрать их воедино при необходимости — задание не из легких.

Учитывая размер, обнаружить пылинки сложно. А все частицы из “распорошенных” — и подавно. К тому же, даже небольшое количество “невыявленных элементов” продолжит “сливать” информацию.

Стоимость

Это новая технология. Поэтому затраты на ее внедрение очень высоки. Пока стоимость не снизится, умная пыль будет недоступна для многих.

Умная пыль уничтожить мир?

Технология MEMS может быть разрушительной для экономики и мира в целом. Так считают те, кто с 1992 года занимался ее разработкой. Эту же мысль поддерживают крупные компании, которые инвестировали в исследования. Среди них — General Electric, Cargill, IBM, Cisco Systems.

Поэтому важно убрать все “опасные” моменты, чем “распорошить” повсеместно умную пыль.

Первый тестовый комплект «умной пыли» под названием Smart Mesh состоит из 12 миниатюрных устройств, называемых «пылинками». Цена всего комплекта, включающего сами устройства и ПО, составляет $4950 тыс. Устройства связаны беспроводными линиями передачи и могут передавать данные с сенсоров, контролирующих температуру, скорость ветра, влажность либо иные параметры. Фактически они представляют собой беспроводные роутеры с батарейным питанием. С их помощью можно создавать, например, системы управления производственными процессами либо охранные системы. Скорость обмена данными у «пылинок» относительно низка, что позволяет обеспечить низкое энергопотребление и питание от автономных источников. Это, в свою очередь, позволяет существенно снизить стоимость эксплуатации систем на их основе, поскольку отпадает необходимость в проводке сетей электропитания, а также обеспечивает беспрецедентную гибкость системы.

SmartMesh представляет собой «слой», позволяющий организовать обмен данными между двумя другими «слоями» -- датчиками, с одной стороны, и информационной системой, в рамках которой они функционируют, с другой. Каждая «пылинка» представляет собой узел беспроводной сети обмена данными с ультранизким энергопотреблением. Передача данных осуществляется от узла к узлу, аналогично тому, как происходит передача пакетов в сети интернет -- за исключением того, что в системе «умной пыли» применяется вместо TCP/IP, ставшего фактическим промышленным стандартом, иной протокол передачи данных. Еще одно отличие -- в том, что разработана технология, позволяющая держать устройства в выключенном состоянии большую часть времени. «Если держать радио все время включенным, -- резонно отмечает Крис Пистер, -- батарейки протянут лишь считанные недели». Новая технология позволила добиться ошеломляющего результата -- отдельная «пылинка» на батарейках АА без их замены может проработать три года. Программное обеспечение Business 2.0, поставляемое в комплекте с «пылинками», позволяет им самим организовать сеть и обеспечить столь низкое энергопотребление.

По мнению авторов разработки, по мере того как концепция «умной пыли» будет получать все более широкое распространение, производители станут оснащать датчиками буквально каждую деталь, устройство и каждое помещение, что откроет возможность контроля и управления за широким спектром технологических процессов или, к примеру, за энергопотреблением, в режиме реального времени. Это позволит, в частности, повысить эффективность производства, создать более надежные охранные системы (оснастить датчиками вибрации весь охраняемый периметр) и улучшить урожайность полей (разместив датчики влажности и кислотности в почве у каждого растения).

Воплощение идеи «умной пыли» в жизнь потребовало немалых инвестиций. Dust Networks на ее разработку получила в общей сложности более $7 млн. от таких компаний, как Foundation Capital, Institutional Venture Partners. Одной из них стала In-Q-Tel -- венчурная компания, финансируемая ЦРУ. Данных о том, во сколько обойдутся заказчикам большие промышленные сети «умной пыли», Dust Networks пока что не приводит.

Умная пыль – сеть из беспроводных микроэлектромеханических устройств, называемых mote (с англ. «пылинка») или «мот» в русском варианте.

Моты регистрируют уровень освещенности, вибрации, температуру, химический состав окружающей среды и самоорганизуются в сеть для обмена сообщениями.

2. История создания и развития

Исследования сетей, состоящих из большого количества крохотных устройств, началось в конце 20 века в DARPA для военных целей. Термин «умная пыль» (с англ. «Smart Dust») был предложен учеными из Калифорнийского университета Беркли в 1997 году. Ключевая концепция использования умной пыли состоит в том, чтобы развернуть сети из множества миниатюрных устройств (мотов) в помещениях и на открытом пространстве для сбора различных данных и анализа состояния окружающей среды.

Сегодня главной компанией занимающейся разработкой и исследованиями в области умной пыли является Dust Networks. Ей помогает компания Cisco. Вопрос о стандартах взаимодействия мотов в настоящий момент является открытым, активно разрабатываются и тестируются протоколы связи для таких сетей.

В будущем планируется уменьшать размер устройств, в идеале достичь размеров, не превышающих размеров частички пыли (отсюда и название «умная пыль»).

3. Технические характеристики

Размер устройств без антенны не превышает нескольких миллиметров. Обычно изготавливаются на кремниевой подложке. Более дешевым вариантом являются моты, изготовленные из полимеров, однако такие устройства имеют меньший срок службы. Работают данные устройства от микробатареек в среднем в течение 10 лет.

Между собой моты могут общаться при помощи радиоволн малой мощности или с помощью оптических волн. И тот и другой способ накладывает некоторые ограничения на область применения мотов. Самым распространенными алгоритмами самоорганизации на сегодняшний день являются биоподобные, в частности роевой (копирует поведение роя пчёл, муравьев). Связь с сетью общего пользования осуществляется через специальные шлюзы.

В среднем к одному моту подключается до 10 миниатюрных датчиков в зависимости от задач, возложенных на сеть. Одной из модели построения сети является распределение обязанностей. Т.е. все моты разбиваются на группы с разными функциональными возможностями и могут привлекать друг друга в зависимости от задачи и конкретной ситуации.

В качестве операционной системы на устройствах умной пыли используется встроенная TinyOS. TinyOS написана на языке программирования nesC и представлена набором взаимодействующих задач и процессов.

4. Кейсы применения

В военной сфере умную пыль применяют для разведки вражеской местности, атаки на военные объекты (например, рой мотов окружает БПЛА и, например, самовоспламеняется или мешает ориентированию в пространстве). Множество применений и в гражданской области. Самое распространенное мониторинг труднодоступной среды (например, на вращающихся элементах, шахтах и др.).

Организация умных помещений: моты контролируют микроклимат в помещении, осуществляют мониторинг движения людей и животных. В будущем с появлением новых технических возможностей применение умной пыли для мониторинга состояния внутренних органов человека, ликвидации поврежденных или зараженных клеток и т.д. Также умная пыль может использоваться в космическом пространстве, помогая исследовать новые планеты.

Новое поколение устройств smartdust («умная пыль») откроет возможность для беспроводного сбора данных в режиме реального времени, что приведет к изменению представлений об инженерных системах, здравоохранении, взаимодействии с окружающей средой. Как появились такие устройства, и что пока сдерживает их развитие – в материале журналиста Леонида Черняка, подготовленном специально для TAdviser.

В начале 90-х годов XX века совместными усилиями американского оборонного агентства DARPA и компании Rand Corporation были созданы первые автономные информирующие устройства mote (пылинка, частица) размером со спичечный коробок. Они состояли из датчиков, снимающих те или иные показатели окружающей среды, компьютера, передатчика и устройства питания (от сети, батарей или солнечных элементов).

Эти mote предназначались исключительно для военных и разведывательных целей, но уже спустя 5-7 лет, в результате начавшейся тогда «сенсорной революции», появились аналогичные устройства гражданского назначения. Тогда же родилось современное название технологии smartdust (умная пыль), а ее отдельный компонент по-прежнему называется mote. Вышедшие из под контроля спецслужб mote задумывались для разнообразных целей, например, для контроля за сложными инженерными сооружениями, прежде всего мостами, деградирующими в процессе эксплуатации под воздействием внешних факторов (осадки, ветер, температура, вибрация, соль, вызывающая коррозию). Возможно, из-за отсутствия такого контроля произошло обрушение моста в Генуе в августе 2018 года. В постоянном мониторинге нуждаются ледники, леса, вулканы, океан и все остальное.

Экспериментальные экземпляры mote начала двухтысячных выглядели примерно так, как показанное на рисунке ниже устройство. Оно изготовлено в университете Беркли, академическом центре нового движения. Лидером направления стал профессор Кирс Пистер, известный своими работами в области микро электромеханических устройств и основатель компании Dust Networks. Энтузиазм создателей и традиционное для Беркли леворадикальное настроение породили лозунг: «Датчики всего мира – объединяйтесь!» Аналитики заинтересовались новацией и Gartner , не раздумывая, поместила smartdust на стартовую позицию в своей кривой хайпа в 2003 году с перспективой на реализацию через 10 лет

А задуматься было о чем. Идея умной пыли настолько же очевидна, настолько сложна в реализации. Неслучайно в следующий раз технология smartdust появлялась на гартнеровской кривой только в 2013 году. Зато с 2015 она каждый год помещалась в самой начальной точке с более чем десятилетней перспективой на достижение технологии зрелости. Основной причиной неоднократного отката на прежнюю позицию оставалась недостаточная подготовленность сетевых и коммуникационных технологий.

До последнего времени весьма специфические «пыльные сети» оставались совершенно оригинальны. Они создавались в отрыве от других типов сетей, но отнюдь не из-за стремления к самобытности. Это была вынужденная мера, поскольку ничего соответствующего их требованиям на рынке не было.

Исходной точкой для подхода к сети mote служит тот факт, что по определению мощность передатчика каждого отдельно взятого устройства ничтожно мала. В результате для создания сети была выбрана беспроводная технология Multi-hop, в основе которой лежит цепочечный принцип, а именно, каждый из узлов служит ретранслятором для остальных. Топология full-mesh гарантирует надежность и отказоустойчивость. Внутри сети передача данных осуществляется по собственному (проприетарному) протоколу TSMP (Тime Synchronized Mesh Protocol), разработанному компанией Dust Networks, а далее через шлюз сеть подключается к интернету. Для компании, насчитывающей полсотни работников, это достижение.

За полтора десятилетия размеры mote сократились до нескольких кубических миллиметров, а стоимость - до $10 и ниже. Но этого пока недостаточно для массового распространения smartdust, поскольку остается вопрос коммуникации. Ситуация может принципиально измениться с появлением технологий мобильной связи пятого поколения Bluetooth 5.0 и . В этом случае отпадает необходимость в отельной сети, а каждый mote может быть подключен непосредственно к интернету.

Новое поколение smartdust откроет возможность для беспроводного сбора данных в режиме реального времени, что приведет к изменению наших представлений об инженерных системах, здравоохранении, взаимодействии с окружающей средой. Миллиарды, если не триллионы устройств, способных к передаче данных и к взаимодействию по обратной связи смогут передавать по запросам самые разные доступные физические и химические показатели окружающей среды. Устройства могут получать питание от батарей, извлекать энергию из среды (вибрации, свет). Они могут быть распложены в любых самых труднодоступных местах. Есть основания полагать, что smartdust, как всеобъемлющее явление, со временем поглотит интернет вещей (IoT) , символ Четвертой промышленной революции .

По аналогии с WWW (World Wide Web) можно сказать, что средствами smartdust мир превращается в единый Real World Web. Пока сложно представить себе жизнь, где информированность безгранична, где мы будем узнавать все от тривиального сообщения о необходимости замены зубной щетки до получения достоверных сведений обо всех остальных инженерных и природных объектах.

Однако миру полной информационной открытости угрожает эффект Большого брата, описанный Джеймсом Оруэллом в романе «1984». Об этой опасности обычно вспоминают, говоря о социальных сетях, и во многих других случаях соприкосновения людей с различными формами слежения за ними. Поэтому одной из главных задач будущих технологий smartdust станет сохранение частного пространства (privacy).

После 2013 года поднялась пока еще скромная по своим масштабам волна создания стартапов, подготавливающих поле для своего участия в smartdust. Большая часть из них не поднялась до системного уровня Dust Networks, идя другим путем, и ставя перед собой ограниченные задачи, позволяющие оправдать вложенные в них средства. Например Koto Air (Словения), QwikSense (Голландия), Wynd Technologies и Birdi (обе ) предлагают системы для контроля за состоянием атмосферы в домах, учебных заведениях и больницах. Американская CivicSmart – управление парковкой.

Очевидно, что эти компании делают заготовку на будущее, решая частные задачи, они подспудно разрабатывают датчики, рассчитанные на подключение по каналам связи пятого поколения. Но есть и компании с более серьезными целями, среди них Cubeworks (США), выпускающая сверхминиатюрные датчики и платформу Cubisens для сбора информации и хранения данных.

Датчик CubeWorks состоит из четырех компонентов, размещенных на одном кристалле:

  • Процессор ARM Cortex M0 и память 4 Кбайт
  • Зарядное устройство
  • Радиопередатчик
  • Датчик

Потребление энергии в режиме готовности составляет 8 нВт. При передаче оно возрастает, но зарядное устройство, отдающее 10 нВт с 1 квадратного миллиметра в условиях комнатного освещения, в сочетании с батареей обеспечивают неограниченно долгий период работы.

Крупные вендоры тоже проявляют внимание к smartdust, прежде всего IBM . Корпорация традиционно развивала логически близкую к smartdust тему всепроникающего компьютинга. Однако теперь она, вероятно, разворачивается в сторону smartdust.

Голубой гигант все делает не быстро. Народная мудрость гласит, что IBM начинает осваивать сегмент рынка только в том случае, если он больше миллиарда. Видимо пока корпорация в ожидании, но явно на старте.

Ключевой момент для smartdust - дешевый и производительный процессор. Его можно сделать при условии массового производства, поэтому в порядке подготовки к будущему на конференции Think 2018 корпорация объявила о самом маленьком в мире компьютере. Его размер - 1 кв. мм. Несмотря на миниатюрность, по мощности он сравним с Intel 8086. А в этом квадратном миллиметре, помимо процессора и памяти, есть питающий устройство фотоэлемент и встроенная пара фотодиод/фотодетектор, обеспечивающая оптическую связь с внешним миром. Стоимость устройства при массовом производстве составляет менее 10 центов.

Что такое умная пыль? Видео.

Преемники этого компьютера, но поддерживающие связь по радиоканалу, смогут стать базисом для будущих устройств smartdust. А до тех пор автономный компьютер с оптической связью может выполнять функцию метки, удостоверяющей подлинность товара. Подделать ее невозможно, а считать данные посредством смартфона ничего не стоит. Массовое производство такого рода меток станет заделом для smartdust в обозримом будущем.

Облачный ИИ, платформа как услуга, данные как услуга. Хотя машинное обучение не новая технология, его внедрение через платформы изменит миллионы, может, даже миллиарды жизней так же, как когда-то их изменили облачные технологии.

Дополненная, искусственная, виртуальная реальности. Некоторые из этих терминов используются как равнозначные, но на самом деле они обозначают совершенно разные вещи: вокруг виртуальной реальности было много хайпа, но было создано совсем немного конкретных приложений, дополненная реальность показывает хороший потенциал в качестве расширения для цифровых платформ: каждая стена может стать экраном.

Кроме того, представьте сборку мебели IKEA с помощью схем и инструкций, которые появляются внутри очков. Или можно будет находить закономерности в реальном мире с помощью AR и машинного обучения. Или найти конкретного человека в толпе за секунды. И этот список можно продолжать.

Беспилотные автомобили. Если изменить автомобиль, то поменяется и проектирование городов. Всё очень просто.

Однако современные беспилотные автомобили не способны ездить безопасно без посторонней помощи (согласно этому небольшому руководству). Чтобы добиться более высокого уровня автоматизации, требуется дальнейшее усовершенствование в считывании данных, обработке изображений и создании карт - а также расширение возможностей ИИ и компьютерных систем.

В таком случае нам надо сосредоточиться на полуавтономных машинах, которые можно использовать, чтобы перевозить товары быстрее и точнее. Они могли бы уменьшить количество аварий и пробок на дорогах, даже замедлить процесс урбанизации, потому что у людей появится возможность использовать время поездки для более важных когнитивных процессов, а значит, им не обязательно будет жить в центре городов.

Ну а пока я по-прежнему буду пользоваться переполненным метро.

«Умный» дом. Эти изменения уже происходят и скоро будут повсеместно внедрены на Западе. Я говорю о лампочках, которые можно контролировать со смартфона, о холодильниках, которые за вас смогут заказывать молоко или другие продукты, когда они закончатся, и о саморегулирующихся термостатах.

5G. Хотя технологии 5G ещё придётся столкнуться со множеством проблем, скорее всего, это платформа, на которой будет основано много вещей из будущего. Мы здесь говорим о десятикратном увеличении скорости интернета, десятикратном увеличении плотности покрытия сети и стократном увеличении эффективности использования сети - всё это потребуется для обеспечения работы всего, о чём писалось выше и будет написано ниже.

Сверхмалая задержка передачи данных и доступность множества данных гарантирует конкурентные преимущества тем, кто готов с этим работать. Большинство руководителей организаций должны знать или задавать вопросы о том, как развиваются местные сети. Да здравствует 5G.

Квантовые компьютеры. Квантовые компьютеры будут на такие расчёты, которые просто немыслимы для современных машин, но мы ещё не поняли, что надо сделать, чтобы добиться таких мощностей.

Одна наиболее вероятная и привлекательная возможность: точное изображение молекул, которое перевернёт производство, химию и медицину современности. И хотя квантовые компьютеры общего назначения вряд ли будут созданы, сама технология обладает серьёзным потенциалом в узких конкретных областях.

Расширение человеческих способностей. Веселье! Азарт! Экзоскелеты! Уже сейчас существует бесчисленное множество способов возможности наших тел, от некоторых из них можно только поморщиться, вроде имплантации чипа под кожу, другие - очень простые, например, пристегнуть компьютеризированный бандаж на колено.

С одной стороны, у этой технологии есть потенциал улучшить человеческое тело и разум, с другой - возникают этические и юридические вопросы, поэтому внедрение некоторых из этих инструментов пока обсуждается.

Интернет вещей, граничные вычисления, интеллектуальная граница. По большей части обработка данных у устройств, подключаемых к интернету, происходит в облаке. Пересылка данных от устройства к центральному серверу и обратно может занимать несколько секунд, это слишком долго.

Поэтому если сделать так, чтобы объекты могли обрабатывать данные самостоятельно (в «границах» экосистемы), станет возможным создание автономных транспортных средств. Эта технология также способна сделать бесценный вклад в медицину, производство и многие другие сферы.

Но как это обстоит и с другими разработками, описанными как выше, так и ниже, сначала надо подтянуть аппаратную часть, только потом мы сможем реализовать все эти идеи (смотрите “Are ASIC Chips The Future Of AI?”).

Когда «умных» вещей станет больше, произойдёт сдвиг от обособленных «умных» объектов к группам взаимодействующих «умных» объектов. При такой модели множество устройств будет работать вместе либо независимо, либо с участием человека. Технология используется военными, которые изучают применение групп дронов для атак или защиты военных объектов. Но она развилась бы сильнее благодаря сотням потенциальных вариантов использования в гражданских целях.

Микрочипы, биочипы. Сейчас основная идея применения микрочипов - отслеживание биометрических данных на работе в рамках экосистемы «умного» рабочего пространства . И хотя пока ничего особенно интересного тут не придумано, технология уже позволяет устанавливать личность сотрудников и платить за ланч или кофе.

Если только вдруг все не согласятся ежедневно на работе отслеживать давление, эта технология так и останется совершенно безобидной в ближайшем будущем. На поверхности чипа расположена группа молекулярных сенсоров, которая может анализировать биологические и химические элементы. А значит, эти чипы будут способны обнаруживать серьёзные заболевания на ранней стадии. А это приводит нас к следующему пункту.

Нанороботы. Если вам нужны ещё более мелкие устройства, чем микрочипы, обратите внимание на нанороботов. Они находятся в стадии исследований и разработки и являются крошечными сенсорами.

Первым полезным применением этих наноустройств станет наномедицина. Например, эти биологические машины можно использовать для определения и уничтожения раковых клеток или доставки лекарств. Другое их потенциальное применение - обнаружение токсинов и определение их концентрации в окружающей среде.

Анализ генетической предрасположенности. Нет, пока я не имею в виду «Гаттаку ». Но мы близки к этому: учёные уже могут с помощью генома предсказывать вероятность сердечных заболеваний или рака груди, даже IQ (мой, например, находится в промежутке между 75 и 135, согласно ненаучным тестам на BuzzFeed). Поэтому такой анализ ДНК может существенно улучшить здоровье людей, даже несмотря на опасность генетической дискриминации .

Например, если у женщины выше риск развития рака груди, она должна иметь возможность чаще делать маммографию, а те женщины, у которых риск ниже, - могут делать их реже. Так можно засечь больше реальных случаев заболевания раком и отсеять небольшое количество случаев ложной тревоги. В итоге улучшится качество лечения, а медицинские страховые взносы снизятся.

Возможно, это повлияет на развитие персонализированной медицины, хотя организация такой задачи в условиях текущего политического климата, скорее всего, станет финансовой и организационной катастрофой.

CRISPR. Даже если будущее из «Гаттаки» не наступит, простое изменение некоторых генов для лечения конкретного человека может легко нам испортить апокалиптическое будущее, к которому движется человечество. У методики редактирования генома CRISPR-Cas есть множество потенциальных вариантов применения, включая медицину и улучшение качества семенного материала сельскохозяйственных культур.

Не так весело, если человечество будет модифицировать геном вирусов для создания новых болезней.

В любом случае я с нетерпением жду те времена, когда каждый человек будет выглядеть как что-то среднее между Томом Хиддлстоном и Идрисом Эльбой.

3D-печать металлом. Возможно, 3D-печать это уже прошлое (хотя идеи, стоящие за этой технологией, только недавно стали более реалистичными), но нам ещё предстоит в полной мере увидеть возможности этой технологии с применением новых материалов. Когда станет возможной работа с различными металлами , мы сможем создавать более лёгкие, прочные и сложные объекты, например сложные или индивидуальные механические детали (например, для кастомизированных автомобильных двигателей). Однако этот процесс трудно освоить.

Устройства, носимые в ушах. Будущее за ушами! И хотя голосовые платформы могут стать следующим значительным явлением, я бы не стал сбрасывать со счетов уши. «Умные» наушники вполне могут вскоре стать повседневными советниками по всем вопросам, а может, даже будут подсказывать (бывало, что вы никак не могли запомнить имя того парня?).

Подумайте об этой технологии с практичной стороны: уши находятся близко ко рту, способны к многозадачности, работают, когда вы спите, и лучше смотрятся с модными аксессуарами, чем рот или глаза. И я уж не говорю о почти моментальном переводе .

Такими темпами Amazon скоро будет отправлять нам рекламу сиропа от кашля после того, как услышит кашель.

Безуглеродный природный газ. Способность эффективно и дёшево сохранять углерод, высвобождаемый при сгорании природного газа. Вот и всё. Без шуток и уловок. Если вы хотите нормальной жизни для своих праправнуков, сконцентрируйтесь на зелёных технологиях .

Малопонятные, но очень интересные технологии

«Умная» пыль - это крошечные (0,15 x 0,15 мм) сенсоры, которые могут собирать огромное количество информации с обширных территорий, не вмешиваясь при этом в экосистему. Например, они способны обнаруживать коррозию в изнашивающихся трубах на фабриках прежде, чем те начнут протекать (или анализировать состав питьевой воды, большой привет городу Флинт), отслеживать изменение почвы в городах, или даже недоступные территории, вне зависимости от их размера.

Одна из проблем этой технологии, которую активно обсуждают, это экологический вред, который могут нанести сенсоры, а также неэтичные варианты их использования. Кроме того, существует вопрос о том, насколько эффективными могут быть собранные данные в сравнении со снимками со спутников.

4D-печать. Сам термин 4D-печать может запутать: я не намекаю на то, что человечество будет способно создавать и получать доступ к ещё одному измерению (только Рубику это удалось). Проще говоря, продукт 4D-печати - это объект 3D-печати, который сможет менять свойства, если на него будет воздействовать определённый стимул (например, погружение под воду, нагревание, встряска, перемешивание).

Варианты применения всё ещё обсуждаются, но благодаря этой технологии многие области промышленности могли бы стать более самодостаточными, а некоторые продукты - имели бы более практическое применение.

Как круто было бы иметь одежду и обувь, которая могла бы изменять форму и функцию в ответ на изменения окружающей среды?

Нейроморфные устройства. А это я называю настоящей научной фантастикой. Нейроморфная инженерия берёт немного от биологии, физики, математики, компьютерных наук и электронной инженерии. Цель этой области исследования - создание устройств, которые копируют ответ нейронов на сенсорный импульс.

Мы не знаем, как эта идея может быть использована, но её изучение должно помочь теоретическим исследованиям ИИ.

Цифровой двойник. Технология цифрового двойника включает в себя разработки в области искусственного интеллекта, машинного обучения и аналитики программного обеспечения для создания цифровой копии физических ресурсов, которая способна изменяться, когда меняется физическая копия, а значит, может предоставить огромное количество информации о жизненном цикле объекта.

Предполагается, что к 2020 году будет около 21 миллиарда подключенных к интернету датчиков, поэтому цифровые двойники будут существовать у миллиардов объектов уже в ближайшем будущем, хотя бы чтобы потенциально сэкономить миллиарды долларов на поддержке и ремонте. Благодаря этому станет возможна оптимизация работы интернета вещей.

Все вышеперечисленное - это круто, но представьте, насколько круче было бы, если бы вместо объектов мы могли бы делать цифровых двойников людей, чтобы в реальном времени отслеживать течение болезни или жизнь целых городов!

Более подробную информацию увидим к 2050 году.

Трёхмерные и аэрозольные экраны. Станут возможны трёхмерные экраны - голограммы. Реклама с их применением может быть либо очень развлекательной, либо ужасной из-за потенциальной нереалистичности (это легко можно представить, посмотрев фильм «Бегущий по лезвию 2049»).

То же самое можно сказать об индустрии, которая захочет применять эту технологию. Я тоже сомневаюсь в важности этой технологии: компьютеры должны были убить бумагу, а я всё ещё распечатываю каждую презентацию, чтобы прочесть её.

Я вообще считаю, что голограмма не может быть самостоятельной технологией, она может только создавать шумиху вокруг других более интересных технологий (таких как адаптивные проекторы).

Нейрокомпьютерный интерфейс иногда называют: нейро-контролируемый интерфейс, мозговой интерфейс, прямой нейронный интерфейс или интерфейс «мозг-компьютер» - это прямой канал связи между мозгом и внешним устройством. Звучит очень круто и футуристично, но вы, наверное, уже видели эту технологию в работе, например, в протезировании.

А вот постоянный доступ мозга к интернету может перевернуть технологию. Кроме возможных социологических, этических и финансовых проблем, меня ещё интересуют теологические вопросы: если у каждого будет доступ ко всей полноте человеческих знаний в любой момент времени, каждое человеческое существо будет богом. А если все боги, то никто не бог. Это успокаивающая мысль.

Доказательство с нулевым разглашением (или краткие неинтерактивные аргументы знания с нулевым разглашением). Слышали о приватности? Специалисты в области вычислительной техники совершенствуют криптографические инструменты для возможности доказать что-то без раскрытия информации, лежащей в основе доказательства.

Звучит невероятно, но не так уж и невозможно, если разобраться в концепте.

Однако технология медленная и требует сложных расчётов. Для неё также требуется так называемый «доверительный протокол», для создания криптографического ключа, который может скомпрометировать всю систему, если попадёт не в те руки. Но исследователи ищут альтернативы, которые будут использовать доказательство с нулевым разглашением более эффективно, не требуя такого ключа.

Летающие беспилотные автомобили. Эту технологию легко представить, потому что она - часть коллективного воображения уже десятки, если не сотни лет. Вполне может быть, что ожидание водителя Uber или Lyft на обочине однажды станет старомодным способом передвижения по городу, как бы глупо сейчас ни звучали идеи о летающих автомобилях.

Мы уже боремся с тем, чтобы люди прекратили нападать на классические беспилотные автомобили, так что пока в этой области нет ощутимых результатов.

«Умные» роботы и автономные мобильные роботы. Эта тема всегда была неотъемлемой частью научной фантастики по очевидным причинам: если соединить роботостроение с общим искусственным интеллектом, то можно допустить мысль о том, что цифровой мир может стать физическим.

Но для начала нам нужно улучшить область роботостроения (пока роботы не очень хорошо двигаются) и создать новую область исследований искусственного интеллекта. Кроме того, автономным мобильным роботам потребуются ёмкие батареи, а значит, требуются дополнительные исследования области литиево-кремниевых технологий. Не может же Илон Маск забрать себе всю славу?

На EdX сейчас есть бесплатные курсы по базовым концептам создания автономных роботов.

Биотехнологии, искусственно выращенные и искусственные ткани. Эти биохаки делятся на четыре категории, которые определят заново, что значит быть человеком: технологичное улучшение тела, нутригеномика, экспериментальная биология и биохакинг грайндеров.

  • Технологичное улучшение тела - использование различных инструментов для улучшения человеческих конечностей (а именно: дополненное зрение, конечности, напечатанные на 3D-принтерах или искусственные ткани).
  • Нутригеномика - это изучение влияния пищевых продуктов и их составных частей на экспрессию генов. Также в этой области исследуют, можно использовать те или иные продукты, чтобы замедлить старение, рак или бороться с ожирением.
  • Экспериментальная биология - экспериментальная наука (что следует из её названия), и я её не особенно понимаю.
  • И наконец, грайндеры - люди, которые с помощью самодельных кибернетических устройств или через введение в организм химических средств пытаются улучшить или изменить функциональность своих тел. Оказывается, принцип «сделай сам» может быть применим и к будущему. Спасибо IKEA.
В продолжение темы:
Asus

Чтобы строки маркированного списка как-то выделить от основного текста, можно сделать так, чтобы цвет маркеров в списке отличался от цвета текста.По умолчанию стоит черная...

Новые статьи
/
Популярные