Тонкомпенсированный регулятор громкости с активной бас-коррекцией. Тонкомпенсированный регулятор громкости с переменным резистором без отводов Тонкомпенсированный регулятор громкости на резисторе без дополнительных отводов

Регуляторами называют устройства для изменения того или иного параметра или характеристики какого-либо блока, узла, прибора, установки. Процесс регулирования может осуществляться либо вручную оператором, либо автоматически по заранее заданной определенной программе; в соответствии с этим и регуляторы называются либо ручными, либо автоматическими.

Регулирование может быть как плавным, непрерывным, так и скачкообразным, ступенчатым, дискретным, поэтому к регуляторам должны быть отнесены и всевозможные переключатели электрических характеристик.

В УНЧ наиболее распространенными являются регулятор громкости, регуляторы тембра верхних и нижних частот, переключатели тембра типа "речь - музыка", а также многодиапазонные тон-регистры, о которых мы еще поговорим особо. В стереоусилителях имеется дополнительно регулятор стереобаланса.

Независимо от назначения и выполняемых функций все регуляторы характеризуются несколькими общими для всех них показателями. Главнейшим из них является диапазон регулировки, который в различной литературе имеет самые разные названия: пределы регулирования, коэффициент перекрытия, диапазон изменения величин и ряд других.

Параметр этот показывает, от какого минимального и до какого максимального значения изменяется регулируемая величина при вращении ручки регулятора (или нажатии кнопок, педалей и т. п.) от одного фиксированного крайнего положения до другого. Имеет смысл остановиться на этом параметре, так как для разных регуляторов в Hi-Fi усилителях пределы регулирования нужно выбирать по-разному.

Для регуляторов громкости желательно иметь диапазон регулирования порядка 60 дб, однако конструкция большинства обычных потенциометров не обеспечивает такого диапазона. Объясняется это наличием так называемого "нулевого скачка", т. е. скачкообразным переходом ползунка потенциометра с мастичной подковки на металлизированную часть дужки. В результате громкость при вращении оси регулятора вначале монотонно и плавно уменьшается, а затем в какой-то момент звук сразу исчезает.

Это не позволяет сделать громкость сколь угодно малой, причем, подчас минимально достижимая громкость оказывается слишком большой. Следующий простой пример иллюстрирует сказанное: пусть шальная выходная мощность усилителя Р вых.макс = 20 вт, а регулятор громкости имеет диапазон регулирования 40 дб. Заметим, что на практике этой случай не редкий и многие потенциометры имеют еще меньший диапазон.

Тогда этот регулятор может позволить получить минимальное выходное напряжение в 100 раз меньше максимального, что соответствует уменьшению выходной мощности в 100 2 раз, т. е. в 10 4 раз. Значит, минимально достижимая громкость будет соответствовать входной мощности 20 вт: 10 4 = 2 · 10 -3 вт = 2 мвт. Напомним для равнения, что максимальная неискаженная выходная мощность промышленного транзисторного приемника "Сюрприз" равна всего 50 мвт, приемника "Космос" - 30 мвт, а таких сравнительно больших, как "Сокол", "Юпитер", "Сигнал", "Нейва" - 60 мвт.

Следовательно, для обеспечения плавного уменьшения громкости в Hi-Fi усилителях до исчезающе малых значений нужно выбирать тип и отбирать экземпляр потенциометра, имеющий диапазон регулировки не менее 60 дб.

Такой отбор можно производить многошкальным омметром, позволяющим уверенно отсчитывать единицы ом. Отбирают потенциометр с минимальным значением сопротивления скачка со стороны "нуля", т. е. при вращении оси против часовой стрелки.

Для регуляторов тембра, регулирующих характеристику на ±20 дб, вполне достаточно иметь у потенциометра диапазон регулирования 40 дб. Для регулятора стереобаланса диапазон в 40 дб оказывается излишним, поэтому в схемах обычно предусматривают ограничительные резисторы.

Следующий важнейший параметр любого регулятора - характер или кривая изменения регулируемой величины. Для потенциометров в бытовой радиовещательной аппаратуре приняты три типа (закона) изменения величины сопротивления при вращении оси: линейный, обозначаемый буквой "А", показательный (буква "Б" на корпусе) и обратный логарифмический (буква "В").

Для регуляторов громкости применяют только потенциометры с обратным логарифмическим законом изменения сопротивления (кривая "В"), для регуляторов тембра - линейные и иногда (в специальных случаях) - логарифмические. В регуляторах стереобаланса применяют только линейные регуляторы (с буквой "А").

Переменные конденсаторы выпускают обычно либо прямоемкостные (с линейным характером изменения емкости), либо прямочастотные. При выборе того или иного вида характеристики в каждом конкретном случае исходят из назначения регулятора.

Наконец, важно, чтобы сам регулирующий элемент не вносил нелинейных и частотных искажений, а также обладал уровнем собственных шумов по крайней мере на 10-20 дб ниже минимального уровня сигнала в точке включения регулятора.

К переменным конденсаторам предъявляются требования механической жесткости подвижной системы, исключающей появление микрофонного эффекта, и отсутствие искровых разрядов во время вращения оси. Последнее требование практически исключает возможность применения переменных конденсаторов с твердым диэлектриком в Hi-Fi усилителях.

Уяснив сказанное, перейдем к рассмотрению конкретных схем регуляторов, применяемых в УНЧ.

1. Регуляторы громкости. Главное отличие регуляторов громкости Hi-Fi усилителей от обычных состоит в повышенных требованиях к характеру тонкомпенсации. Мы уже договорились в гл. 1 ввести количественную характеристику этого параметра. Теперь посмотрим, какими способами можно обеспечить выполнение этих требований.

Для того чтобы регулирование громкости на слух не было частотно-зависимым, т. е. чтобы слушатель при регулировании громкости не ощущал одновременно и изменения тембра звука, нужно при изменении громкости автоматически и вполне определенным образом изменять частотную характеристику усилителя: при уменьшении громкости частотная характеристика на низших и высших частотах должна приобретать подъем относительно средних частот, притом тем больший, чем меньше громкость. Это делается для того, чтобы скомпенсировать снижение чувствительности уха на низших и высших частотах при малой громкости.

Все схемы тонкомпенсации с использованием потенциометров с одним или несколькими отводами по своему принципу не позволяют получить требуемые характеристики, так как метод основан на том, что при уменьшении громкости происходит прогрессирующее ослабление составляющих высших частот, которое по мере вращения регулятора влево захватывает все более широкий участок спектра в сторону низких частот.

Добавление в схему всевозможных "закорачивающих" и "корректирующих" конденсаторов малой емкости не меняет положения, так как степень такого "закорачивания" постоянна и не меняется при вращении регулятора громкости, снижая в то же время общую эффективность тонкомпенсации.

Автором в свое время был предложен способ осуществления Эффективной тонкомпенсации на обычных потенциометрах без отводов, дающий очень хорошее приближение к кривым равной громкости. Различные модификации таких схем применялись в течение ряда лет в различных УНЧ и вполне себя оправдали. Однако с годами росли и требования к характеру тонкомпенсации, в силу чего схемы также постоянно совершенствовались. На сегодня можно предложить радиолюбителям два варианта таких схем: рис. 38 для Hi-Fi усилителей "стандартного" класса и рис. 39 - для усилителей "экстра-класса".


Рис. 39. Схема тонкомпенсированного регулятора громкости на сдвоенном потенциометре для усилителей "экстра-класса"

Обе они работают по принципу плавного введения в цепь прохождения НЧ сигнала в процессе уменьшения громкости неполного двойного Т-образного фильтра, частотная характеристика которого формируется подбором входящих в него элементов для минимального уровня сигнала.

При указанных на схеме величинах элементов регуляторы в "чистом виде" (т. е. не в схеме усилителя) имеют частотные характеристики, приведенные на рис. 40.

Нужно отметить, что хотя обе схемы имеют отличные частотные характеристики (особенно вторая), включение их в конкретный усилитель со своими цепями отрицательной обратной связи неизбежно каким-то образом изменяет характер тонкомпенсации, причем это чаще всего приводит к некоторому недостатку в спектре воспроизведенного сигнала самых нижних частот (притом только на самых малых уровнях громкости). Поэтому автор предлагает непосредственно на ручке регулятора громкости установить обычный тумблер, работающий независимо от вращения оси, например путем нажатия на ручку регулятора, либо установить тумблер просто рядом с регулятором громкости. Электрически этот тумблер включает дополнительную большую емкость в цепь катода лампы 1-го каскада УНЧ, увеличивая относительное усиление на частотах 20-60 гц (рис. 41).

Заметим попутно, что во многих наиболее дорогих моделях зарубежных усилителей и электрофонов имеются устройства аналогичного назначения (фирмы "Dual", "Ampex" и др.), хотя схемно они обычно решены иначе.

Еще раз напоминаем, что независимо от сложности и характера схемы тонкомпенсации точка присоединения к корпусу (шасси) всех ее элементов должна быть только одна и причем только в том месте, где соединяются с корпусом резисторы утечки сетки и автоматического смещения входной лампы УНЧ.

Все элементы схемы тонкомпенсации должны быть тщательнейшим образом экранированы от электростатических и электромагнитных наводок.

2. Регуляторы тембра за последние годы достигли значительного совершенства, а схемы некоторых из них, например приведенная на рис. 42, стали уже "классическими". И все же, несмотря на хорошие характеристики регулирования и незначительное взаимное влияние, эти схемы не совсем пригодны для Hi-Fi усилителей. Главный недостаток всех распространенных схем - малая гибкость регулирования.

Не нужно путать этот термин с понятиями глубины и широты регулирования. Глубина регулирования показывает в цифрах, т. е. количественно, в каких пределах изменяется при регулировании уровень сигнала на граничных частотах, широта регулирования характеризуется диапазоном частот, захватываемых данной регулировкой, а гибкость регулирования характеризует возможность достаточно произвольного изменения формы частотной характеристики внутри регулируемого участка при той же глубине регулировки. На рис. 43 приведено семейство кривых "классического" регулятора тембра по схеме рис. 42, из рассмотрения которых видно, что в процессе регулирования меняется только угол наклона ветвей кривых, а характер изменения кривой все время остается одинаковым: либо монотонно убывающим, либо монотонно возрастающим от условной середины кривой к ее краям. Это приводит к тому, что слушатель не может произвольно подчеркнуть или ослабить какой-нибудь определенный участок спектра, что не позволяет получить верное воспроизведение в большинстве случаев.

Одной из "полумер", позволяющей в некоторой степени уменьшить указанный недостаток сравнительно простым способом, является предложенный автором метод использования для регуляторов тембра потенциометров с отводами, предназначенных для тонкомпенсированных регуляторов громкости. Схема включения этих потенциометров в "классический" двухдиапазонный регулятор тембра приведена на рис. 44, а семейство его частотных характеристик - на рис. 45. Из сравнения этих характеристик с приведенными выше становится ясно, как изменяется характер регулирования после переделки схемы.

Однако, если такая измененная схема регулятора тембра еще может быть использована в усилителях "стандартного Hi-Fi класса", то для "экстра-усилителей" необходимо введение по меньшей мере четырех плавных регуляторов тембра на участках 20-100, 100-1000 гц, 1-8 и 8-20 кгц.

Конечно, указанные границы весьма условны и требуют уточнения в процессе экспериментирования с высококачественными усилителями.

При делении полосы частот на несколько участков не всегда целесообразно для всех участков применять одни и те же схемы регулирования. Правильнее для каждого участка использовать свои схемы, учитывающие специфику данного диапазона частот.

В частности, при наличии в схеме четырех отдельных участков с указанными выше граничными частотами автор предлагает для регулировки во втором и третьем участках (т. е. на частотах от 100 до 8000 гц) применять "классическую" схему на потенциометрах с дополнительными отводами, подобную приведенной на рис. 44. Для первого участка, т. е. на частотах, где нелинейные искажения на слух менее всего заметны, проще и лучше всего применить схему, приведенную на рис. 46.

Схема работает следующим образом: в среднем положении потенциометра R 6 , являющегося регулятором тембра, напряжение звуковой частоты на его движке по отношению к шасси равно нулю (при полной симметрии обеих половин вторичной обмотки выходного трансформатора), поэтому вся цепь регулирования тембра не оказывает на усилительный каскад никакого влияния.

Постоянная времени всей цепи С 2 , R 4 , С 3 , R 5 , C 4 выбирается настолько большой, чтобы на частотах свыше 100 гц прохождения сигнала в направлении, указанном на рис. 47 стрелкой, не было совсем.

На более низких частотах при вращении оси потенциометра R 6 на нижней части потенциометра R 2 будет появляться напряжение звуковой частоты, причем амплитуда его на всех частотах будет пропорциональна углу поворота регулятора. Однако для более низких частот абсолютная величина напряжения будет больше, чем для относительно более высоких частот.

Кроме того (и это главное!), при переходе регулятора через среднюю нулевую точку на всех частотах будет изменяться на обратную фаза напряжения.

А так как указанная цепь является цепью обратной связи, охватывающей весь усилитель, то в зависимости от положения движка регулятора относительно его среднего положения эта обратная связь будет либо положительной, либо отрицательной, соответственно увеличивающей или уменьшающей усиление на частотах ниже 100 гц.

Результаты экспериментов показывают, что при двухзвенном фильтре и подаче сигнала в цепь сетки первой лампы глубина регулировки и крутизна среза на верхней граничной частоте оказываются вполне достаточными, а к.н.и. на частоте 20 гц при максимальном подъеме характеристики не превышает 3,5% в УНЧ мощностью 20 вт, что вполне допустимо даже для Hi-Fi усилителей.

На частотах свыше 40 гц к.н.и. уже не превышает 2,0% при подъеме характеристики, а при спаде опускается до значений порядка 0,6% на всех частотах участка.

Правда, схема весьма критична к регулировке в процессе налаживания из-за опасности самовозбуждения на инфразвуковых (и даже на звуковых) частотах при положительной обратной связи. Однако при достаточно тщательной регулировке схема работает стабильно.

Главное достоинство схемы в том, что она не требует дополнительного усиления, так как в среднем положении движка регулятора тембра затухание, вносимое схемой, равно нулю. Потенциометр R 2 , выведенный "под шлиц", служит для первоначальной регулировки величины обратной связи или, что то же самое, глубины регулировки тембра на нижней граничной частоте (20 гц). Все величины элементов фильтра нуждаются в подборе в процессе регулирования схемы.

Для регулирования тембра на четвертом участке, т. е. на частотах выше 8 кгц, рассмотренная схема не годится, так как увеличение к.н.и. более 1% на высших частотах в Hi-Fi усилителях недопустимо. Поэтому можно предложить две другие, сравнительно несложные схемы.

Первая из них (рис. 47, а) собрана на сдвоенном потенциометре, один из которых R 1 совместно с конденсатором C 1 регулирует величину отрицательной обратной связи по току на частотах свыше 8-10 кгц. Потенциометр R 2 входит в состав делителя выходного напряжения, причем благодаря наличию конденсатора С 3 малой емкости на частотах свыше 8-10 кгц этот делитель является частотно-зависимым, так как напряжение на его выходе зависит от положения движка потенциометра R 2 , тогда как на более низких частотах выходное напряжение практически неизменно для всех частот при любых положениях движка потенциометра.

Потенциометры включают таким образом, чтобы оба движка перемещались вместе вверх или вниз (по схеме). Номиналы элементов на схеме указаны лишь ориентировочно, так как все равно при регулировке усилителя потребуется их подбор.

Другая схема (рис. 47, б) более интересна, хотя и несколько сложнее. В этой схеме нагрузкой эмиттерного повторителя является контур L 1 C 2 C 3 C 4 , настройка которого может меняться при вращении оси регулятора (переменный конденсатор С 2) в диапазоне от 8-10 до 18-22 кгц. Точные границы этого диапазона и величины ограничительных конденсаторов С 3 и С 4 подбирают при регулировке усилителя.

Ось переменного конденсатора жестко соединена с осью потенциометра R 3 , с движка которого снимается сформированный сигнал.

Потенциометр должен быть обязательно типа "А" причем крайние его выводы включают в схему таким образом, чтобы уменьшению выходного сигнала соответствовала более низкая резонансная частота контура. Переменный конденсатор С 2 - обязательно прямочастотный. При правильной регулировке схемы и соответствующем подборе ее элементов характер изменения кривых регулирования будет таким, как изображено на рис. 48.

Из этих кривых видно, что вторая схема не только регулирует уровень высших частот, но и ощутимо меняет характер кривых, обеспечивая достаточно резкий спад выше граничной частоты. Это является основным достоинством схемы, окупающим ее относительную сложность.

3. Переключатели содержания и тон-регистры. К Hi-Fi усилителям предъявляются два совершенно исключающих друг друга требования в отношении регулировки тембра. С одной стороны, усилитель должен иметь как можно больше плавных регуляторов, позволяющих музыкально образованному слушателю отрегулировать частотную характеристику любым желаемым образом. С другой стороны, усилитель должен обеспечивать достаточно точное звуковоспроизведение передач самых различных жанров при пользовании им слушателем без специального технического и музыкального образования. Это противоречие устранимо только единственным способом: введением в усилитель кнопочного переключателя тембра - так называемого тон-регистра.

Тон-регистр представляет собой устройство, имеющее несколько кнопок для скачкообразного изменения тембра и 4-6 плавных регуляторов тембра. Одна из кнопок имеет надпись "тембр плавно", остальные имеют надписи, соответствующие определенным жанрам музыкальных передач (например, "Джаз", "Соло", "Симфония", "Речь" и т. п.).

При нажатии кнопки "тембр плавно" фиксированные частотоформирующие цепи отключаются, и слушатель получает возможность вручную отрегулировать частотную характеристику с помощью плавных регуляторов тембра. При нажатии любой другой кнопки регистра, напротив, отключенными оказываются все плавные регуляторы тембра, и независимо от их положения частотная характеристика становится фиксированной, должным образом соответствующей обозначенному на кнопке жанру передачи.

Тон-регистры, таким образом, представляют собой наиболее удачное сочетание гибкости и простоты управления тембром звука.

Все тон-регистры представляют собой довольно сложные устройства, иной раз более сложные, чем вся остальная часть усилителя. Никаких полностью законченных схем тон-регистров для их точного копирования привести нельзя, так как в каждом конкретном усилителе имеются свои индивидуальные, неповторимые особенности, которые и определяют параметры и величины схемных элементов тон-регистра. Поэтому мы ограничимся приведением в качестве примера одной сравнительно простой схемы (рис. 49), которую опытные радиолюбители смогут повторить, помня при этом, что часть элементов схемы придется подбирать опытным путем в процессе налаживания усилителя.

4. Регуляторы стереобаланса (РСБ) являются самыми простыми регуляторами в Hi-Fi усилителях и по существу не требуют отдельного описания. Поэтому мы приведем лишь несколько наиболее распространенных схем регулирования (рис. 50) и укажем, что если регулятор включен в участок усилителя с большим уровнем сигнала, например, перед предоконечным усилителем или фазоинвертором, то можно использовать схемы с общей "земляной" точкой. Если же регулятор включен на входе усилителя или в цепях, подверженных влиянию наводок и особенно блуждающих токов шасси, то лучше применять схему с двумя самостоятельными регуляторами на одной общей оси, и точки соединения с корпусом в этом случае разобщить, используя в каждом канале точку соединения с корпусом резистора утечки сетки лампы регулируемого канала. Еще раз напоминаем, что потенциометры для всех видов РСБ должны быть линейными, с буквой "А" на крышке корпуса.

Полезным, хотя и не обязательным дополнением к регулятору стереобаланса является индикатор баланса, позволяющий точно отмечать положение РСБ, соответствующее одинаковому усилению каналов стереоусилителя. Существует немало методов и схем индикации. Мы рассмотрим несколько простых, но достаточно эффективных.

Левая часть рис. 51, а, общая для всех индикаторов, представляет собой выходы обоих каналов усилителя. С помощью кнопки Кн выходы подключают к индикатору со схемой сравнения. В схеме рис. 51, б напряжения со входов А и Б подаются в противофазе на половинки первичной обмотки, имеющие одинаковое число витков. Магнитные потоки полуобмоток при их полной идентичности и равенстве напряжений А и Б одинаковы и направлены навстречу. Поэтому общий магнитный поток равен нулю, напряжение на вторичной обмотке отсутствует, и "магический глаз" индикатора полностью закрыт. При разбалансе в любую сторону напряжение на вторичной обмотке будет пропорционально величине разбаланса и будет вызывать расширение затемненного сектора индикатора.

Схема на рис. 51, в работает по принципу фотометра, т. е. прибора, сравнивающего яркости двух источников света. Лампы накаливания (6,3 в, 0,28 а) помещены в непрозрачный футляр с перегородкой посредине. Одной из стенок футляра служит матовое или молочное светорассеивающее стекло. При разбалансе каналов отчетливо видна граница двух различных яркостей, при полном балансе стекло светится равномерно. Яркость свечения ламп зависит от величины выходного напряжения усилителей и может изменяться регулятором громкости.

На рис. 51, г показана мостовая схема сравнения на диодах. Индикатором является стрелочный прибор, нуль которого находится посредине шкалы (можно использовать амперметр от любого автомобиля с шунтом).

Первая система может быть очень изящно оформлена конструктивно, особенно при использовании пальчиковых индикаторов типа 6Е3П или 6Е1П, позволяет в широких пределах регулировать чувствительность индикатора, однако с ее помощью нельзя определить направление разбаланса. Две другие схемы свободны от этого недостатка, но их труднее оформить достаточно красиво на лицевой панели усилителя.

Во всех случаях эталонным сигналом служит напряжение с частотой 50 гц, подаваемое с той накальной обмотки силового трансформатора, один из концов которой (или средняя точка) соединен с шасси. Это напряжение подается на входные гнезда усилителя через контакты кнопки Кн.

Существуют и другие системы индикации, например с использованием релаксационных генераторов на неоновых лампах, однако они не имеют каких-либо преимуществ перед описанными.

В заключение можно дать еще один практический совет: все потенциометры перед их установкой в Hi-Fi усилитель полезно смазать для предотвращения шорохов и тресков при вращении и увеличения срока службы. С этой целью нужно аккуратно снять защитную крышку и осторожно смазать всю подковку очень небольшим количеством чистого вазелина, а между осью и втулкой капнуть 1-2 капли любого жидкого минерального масла.

При небольших уровнях громкости звучание звукоусилительной аппаратуры невысокого класса не обеспечивает, как правило, качественного воспроизведения. Это связано с тем, что при небольшой громкости ухо человека становится менее чувствительным к частотам нижнего и верхнего спектра. Для устранения этого недостатка в высококачественной аппаратуре предусмотрены различные схемы компенсации амплитудно-частотной характеристики (АЧХ) при малых громкостях звучания, то есть верхние и нижние частоты дополнительно усиливаются, в результате АЧХ выравнивается и качество звучания не изменяется на слух при любом уровне громкости. Самым простым способом можно достичь этого эффекта, применив регуляторы громкости с тонкомпенсацией. Схемы довольно просты и не требуют применения дефицитных деталей и какой-либо настройки.

Подавляющее большинство таких схем ранее строилось на основе специальных переменных резисторов с дополнительными отводами, как показано на рис.1. Основной недостаток таких схем – применение специальных резисторов и небольшая глубина тонкомпенсации. Для них, также, характерна определенная нелинейность, ступенчатость воспроизведения верхних и особенно нижних частот при определенных положениях движка переменного резистора с одним или двумя отводами.

Ниже приводятся схемы тонкомпенсированных регуляторов громкости на резисторах группы «В» без отводов (обычные переменные резисторы, широко применяемые в различной радиоаппаратуре. Группа резистора определяет зависимость вводимого сопротивления при повороте движка и обозначается буквой, например, «А», «В», «С» в его маркировке, перед или после обозначения его номинального сопротивления)

На рис.2 показана схема, где высокочастотная (ВЧ) коррекция осуществляется цепью R1C1 , а низкочастотная (НЧ) – Т-образным фильтром R2C2R3. АЧХ тонкомпенсации этого регулятора примерно такая же, как и у устройств с применением регулятора с двумя отводами. Недостатком такой схемы является небольшая крутизна подъема АЧХ в областях низших и высших частот, а также применение переменного резистора большого сопротивления (2 МОм), которые не очень просто найти в настоящее время.


Рис. 2

Улучшения тонкомпенсации можно достигнуть подключением дополнительных RC-цепей, как на рис.3. К тому же здесь применен переменный резистор широко распространенного номинала (можно поставить 47 … 68 кОм). В этом случае функцию низкочастотного корректора будет выполнять не только Т-образный фильтр R2C3R3, но и введенная дополнительная цепь R7C4. Фактически это будет уже фильтр нижних частот (ФНЧ) второго порядка, обеспечивающий крутизну подъема АЧХ регулятора в низкочастотной области 12 дБ на октаву. ВЧ-коррекция достигнута введением фильтра верхних частот C2R5R6C5R7 в дополнение к традиционной цепи R1C1.

Следует отметить, что в данной схеме тонкомпенсация в области высших частот несколько превышает необходимую. Сделано это преднамеренно и обусловлено чисто субъективным восприятием музыкальных фонограмм в домашних условиях. Небольшой провал АЧХ на частоте 3,5 кГц в нижнем положении движка резистора R4 обусловлен фазовым сдвигом между сигналами этой частоты, прошедшими через ФВЧ и резистор R4. При исключении элементов C2, R5, R6, C5 этот провал исчезает, исчезает и дополнительный подъем АЧХ на высших частотах, что приводит параметры корректора к стандартным, рекомендованным для таких тонкомпенсаторов в различной технической литературе по акустике. Поэтому эти элементы можно исключить, все зависит от конкретных особенностей аппаратуры и личного слухового восприятия.

К незначительным недостаткам данной схемы можно отнести небольшое уменьшение (до 48 дБ) диапазона регулирования громкости, что обусловлено присутствием резистора R7 в цепи регулирования. Но на практике такое небольшое уменьшение диапазона регулировки, как правило, некритично.


Рис. 3

Схему такой тонкомненсации можно применить при разработке и изготовлении новой звукоусилительной аппаратуры, а также для доработки уже имеющихся усилителей, магнитол, приемников. Если в таких устройствах применяются обычные регуляторы громкости, то есть просто переменный резистор соответствующего сопротивления, не включенный в цепи обратной связи усилительных узлов, то можно вместо него включить данную схему. Но при этом нужно учитывать выходное сопротивление предшествующего каскада (до регулятора громкости) – оно должно быть значительно меньше сопротивления резистора R5, и входное сопротивление следующего за регулятором каскада, которое должно быть больше сопротивления резистора R3. Чем больше будет разница этих сопротивлений, тем лучше будет обеспечиваться согласование нагрузок и аппаратура в целом будет работать лучше. В крайнем случае можно перед регулятором и после него включить дополнительные согласующие каскады на транзисторах или микросхемах и тем самым еще и компенсировать возможное небольшое снижение максимальной громкости всего звукового тракта. В моей личной практике такой необходимости не возникало, но ниже приведу пару схем таких дополнительных каскадов согласования (рис.4).


Рис. 4

Схемы представляют собой дополнительные каскады усиления на микросхеме К157УД2 (два усилителя в одном корпусе, показано расположение выводов обоих каналов) и транзисторе. В качестве DA1 можно применить любой операционный усилитель, например К140УД6, УД7, К153 УД1, УД2 и другие с учетом цоколевки их выводов и корректирующих цепей (здесь это конденсаторы С2). От величины резистора R2 зависит коэффициент обратной связи. Чем меньше номинал этого резистора, тем меньше коэффициент усиления каскада и меньше нелинейные искажения. Поэтому резистор следует ставить как можно меньшего сопротивления!

Транзистор во второй схеме можно заменить на КТ315, КТ342, КТ306. Сопротивление резистора R2 здесь зависит от питающего напряжения (чем меньше напряжение питания, тем меньше сопротивление), а резистором R1 задается режим работы транзистора по постоянному току. Подбором этого резистора нужно в режиме покоя (без входного сигнала) установить на выходе (коллекторе транзистора) напряжение, равное половине напряжения питания.

Прилагаю рисунки печатных плат:
- pl1 – плата согласующего каскада на транзисторе;
- pl2 – плата согласующего каскада на МС К157УД2 (два канала);
- pl3 – плата тонкомпенсированного регулятора громкости по схеме рис.3.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Рисунок 2
С1 Конденсатор 51 пФ 1 В блокнот
С2 Конденсатор 6800 пФ 1 В блокнот
R1, R3 Резистор

220 кОм

2 В блокнот
R2 Резистор

820 кОм

1 В блокнот
R4 Переменный резистор 2 МОм 1 В блокнот
Рисунок 3
С1 Конденсатор 680 пФ 1 В блокнот
С2 Конденсатор 0.01 мкФ 1 В блокнот
С3, С4 Конденсатор 1 мкФ 2 В блокнот
С5 Конденсатор 0.047 мкФ 1 В блокнот
R1 Резистор

6.8 кОм

1 В блокнот
R2 Резистор

3.3 кОм

1 В блокнот
R3 Резистор

12 кОм

1 В блокнот
R4 Переменный резистор 68 кОм 1 В блокнот
R5 Резистор

910 Ом

1 В блокнот
R6 Резистор

47 Ом

1 В блокнот
R7 Резистор

200 Ом

1 В блокнот
Рисунок 4. Согласующий каскад на операционном усилителе
DA1 Микросхема К157УД2 1 В блокнот
С1 Конденсатор 1 мкФ 1 В блокнот
С2 Конденсатор 15 пФ 1

2011-07-10 в 17:28

При разборке бабиного магнитофона Маяк 205 мне пришла идея использования одной его детали в качестве "фильтра" а точнее тонкомпенсатора для унч на TDA8560 т.к. это был у меня единственный в наличии на котором можно было бы даже и проверить его работу, всё подключил без проблем, сама плата из него идёт вместе с регулировкой громкости. Сама плата на один канал, если хотим два канала сделать тонкомпенсированными то придётся использовать стерео регулятор. Только я не знаю,почему здесь используется регулятор аж с 4 контактами (видно на схеме). Переменник СП3-30Б. В общем я доволен такой незначительной доработкой данного усилителя. ниже фото сборки и схема.
З.Ы. на подключение у меня ушло минут 10 + зачистка проводов



Далее идут схемы которые ещё не пробовал, но некоторые будут очень похожи.
Тонкомпенсация обычно реализуется частотно-зависимыми делителями (реже - фильтрами), связанными с регулятором громкости. Принципиальный недостаток большинства известных регуляторов на переменных резисторах с отводами - недостаточная степень коррекции АЧХ в области низших частот при малой громкости. Для лучшего приближения к кривым равной громкости необходимо использовать переменные резисторы с несколькими отводами или выполнять регулятор с распределенной частотной коррекцией . Однако такие регулирующие устройства весьма сложны в реализации и поэтому применяются довольно редко.

Наибольшее применение как в промышленных, так и в любительских конструкциях получили ТРГ на резисторе с одним отводом, схема которого приведена на рис.1. (на этом и всех последующих рисунках рядом со схемой ТРГ показаны его регулировочные характеристики). Отвод обычно делается от 1/10 общего сопротивления переменного резистора (считая от нижнего по схеме вывода), что соответствует приблизительно 1/4...1/3 угла поворота движка регулятора. Подключение к отводу RC- цепи превращают регулятор в частотно-зависимый делитель. Цепь R1C1 обеспечивает подъем АЧХ на высших частотах звукового диапазона, а R2C2 - на низших. Однако подобным регуляторам свойственны существенные недостатки. Так, обеспечиваемая ими степень коррекции АЧХ в области низших частот явно недостаточна (не более 8...10 дБ на частоте 50Гц), а в процессе регулировки заметен ступенчатый характер коррекции. По мере снижения громкости после прохождения отвода степень коррекции уже не меняется, тогда как именно при малой громкости она должна быть максимальной. Попытки увеличить степень коррекции уменьшением сопротивления резистора R2 приводят к появлению характерного провала АЧХ на средних частотах в момент прохождения отвода. И все-таки, несмотря на указанные недостатки, многие конструкторы усилителей ЗЧ выбирают именно такой ТРГ из-за его простоты. Указанные на рис.1 номиналы элементов типичны для большинства конструкций. Иногда резистор R1 может отсутствовать. В этом случае емкость конденсатора C1 должна быть примерно в два раза меньше.

Несколько большую степень коррекции АЧХ в области низших частот обеспечивает регулятор, схема которого приведена на рис.2. Его прототип применялся в 50-е годы в радиоприемниках фирмы Philips . Примеры использования таких регуляторов в современных промышленных конструкциях автору неизвестны. Цепь R2C2R3 образует ФНЧ, сигнал с выхода которого подается на отвод регулятора. Этому ТРГ свойственны те же недостатки, что и предыдущему, хотя и в меньшей степени.

Недостаточная степень подъема АЧХ на низших частотах у регуляторов, о которых шла речь, объясняется применением корректирующих цепей первого порядка. В ТРГ (рис.3) глубина коррекции при малой громкости увеличена за счет введения цепи R4C3, образующей совместно с участком переменного резистора от движка до отвода второй частотно-зависимый делитель. Применение двухступенчатой коррекции позволяет довести подъем АЧХ при минимальной громкости до 20...26 дБ на частоте 50Гц. Оборотная сторона этого достоинства - сужение диапазона регулирования громкости до 45-50 дБ, что, впрочем, в большинстве случаев оказывается вполне достаточным.

В некоторых случаях использование переменных резисторов с отводами нежелательно. На рис.4 показана схема ТРГ на переменном резисторе без отводов, использующего фильтровый способ коррекции АЧХ. Фильтр R2R3R4C1C2, подавляющий средние частоты сигнала, начинает работать при малых уровнях громкости, благодаря чему происходит подъем низших и высших частот звукового диапазона. Варианты подобного регулятора широко используются в любительских разработках. Степень подъема его АЧХ на низших частотах при минимальной громкости можно увеличить добавлением корректирующей цепи, аналогичной показанной на рис.3.

Однако все рассмотренные схемы обеспечивают только фиксированную и отнюдь не идеальную коррекцию АЧХ и в ряде случаев требуют применения регуляторов тембра для подстройки тонального баланса. Попытки создания ТРГ с регулируемой коррекцией или совмещения ТРГ с регуляторами тембра предпринимались еще в 50-х годах. Вероятно, одной из первых реализаций этой идеи был регулятор громкости приемника немецкой фирмы "Kontinental" . В схеме наряду с пассивным ТРГ на резисторе с двумя отводами использовалась регулируемая частотно-зависимая ООС, подаваемая на регулятор с выходного трансформатора усилителя.

Оригинальная схема комбинированного пассивного узла регулировок громкости и тембра в транзисторном усилителе приведена на рис.5 . Здесь переменный резистор R3 совместно с цепями R1C1, R2C2, R4C4 образует цепь регулировки коррекции на высших частотах. Цепочка C5R5, подключенная к отводу регулятора громкости R7, обеспечивает низкочастотную коррекцию. Незначительный подъем АЧХ на низших частотах в положении минимального затухания создается резистором R2. Регулируется глубина НЧ-коррекции резистором R6.

Широкие пределы регулировки АЧХ в настоящее время представляются излишними, поэтому имеет смысл исключить конденсатор C2, заменить перемычкой конденсатор C1 и резистор R1, а сопротивление переменного резистора R6 уменьшить до 100 кОм. После такой доработки устраняется спад АЧХ в области высших частот, а диапазон регулировки АЧХ на низших частотах сужается до 10 дБ.

Схема разработанного автором простого ТРГ с регулируемой коррекцией на основе резистора с отводом приведена на рис.6. Регулировка глубины коррекции одновременно по низшим и высшим звуковым частотам производится переменным резистором R1. Если регулировка в области высших частот не требуется, можно исключить конденсатор C2, а сопротивление резистора R3 уменьшить до 10 кОм. Недостаток такого ТРГ (как, впрочем, и всех схем с цепями первого порядка) - недостаточная коррекция низших частот при самой малой громкости. Как уже отмечалось, добавлением корректирующей цепи, аналогично показанной на рис.3, степень подъема АЧХ на низших частотах можно увеличить. Используя предложенный принцип, несложно ввести регулятор тонкомпенсации в звуковоспроизводящую аппаратуру промышленного изготовления.

В следующей схеме ТРГ (рис.7), также разработанной автором, используется одновременно и корректирующий фильтр C3R6R7, и частотно-зависимый делитель R2R3C2, благодаря чему достигается широкий диапазон коррекции. Переменный резистор R2 - регулятор громкости, R1 - регулятор низкочастотной коррекции, R4 - высокочастотной.

Не пропустите обновления! Подписывайтесь на нашу группу

Особенности нашего слуха таковы, что при снижении громкости мы все хуже и хуже начинаем слышать края звукового диапазона, т.е. высокие и низкие частоты. Если с высокими частотами все не так уж и плохо, то вот на низких частотах со снижением громкости требуется их довольно значительный подъем. Для решения данной проблемы применяется тонкомпенсированный регулятор громкости.

В доказательство сказанному на следующем рисунке представлены кривые равной громкости человеческого уха:

Упомянутый выше тонкомпенсированный регулятор громкости одновременно с изменением громкости изменяет и форму АЧХ так, чтобы тембр звука слабо зависел от уровня громкости. Для того, чтобы тонкомпенсация была верной, а изменение громкости равномерным, необходимо, чтобы определенное положение регулятора создавало в точке прослушивания соответствующий уровень громкости. Так, при установке регулятора громкости в положение максимальной громкости в точке прослушивания должен быть получен уровень громкости в 90 фон.

Простые тонкомпенсированные регуляторы громкости создают относительный подъем низших частот, который тем больше, чем меньше громкость. Существуют также и более сложные схемы, с и без использования активных элементов (транзисторы, ОУ), которые создают относительный подъем как низких, так и высоких звуковых частот.

Тонкомпесированный регулятор громкости на резисторе с дополнительными отводами

Простота этой схемы компенсируется проблемой поиска переменного резистора группы В с двумя отводами.

Если же вам удалось найти нужный резистор, то на основании величины сопротивления этого резистора можно рассчитать и остальные элементы:.

  • R3 = R / 1.2
  • R1 = R2 = 0.1 R3
  • R4 = 0.11 R1
  • R5 = 0.125 R1
  • C1 = 4 / R1
  • C2 = 3.9 / R1
  • Где R — сопротивление переменного резистора, кОм
  • R1 , R2 , R3 — сопротивление секций переменного резистора, кОм
  • R4 , R5 — сопротивление резисторов корректирующих цепочек, кОм
  • C1 , C2 — емкости корректирующих цепей, мкФ

Вот так выглядит один из вариантов переменного резистора с отводами отечественного производства:

Тонкомпенсированный регулятор громкости на резисторе без дополнительных отводов

Такой регулятор можно собрать и на доступном каждому переменном резисторе без дополнительных отводов . Схема такого регулятора приведена на следующем рисунке.


Использование резистора без отводов приводит к необходимости применения дополнительных деталей, однако это не сильно усложняет схему.

Обе приведенные схемы реализуют относительный подъем только в области низких звуковых частот. Относительный он потому, что отсутствие активных элементов не позволяет осуществить подъем, превышающий исходный сигнал, вместо этого осуществляется ослабление остальной части сигнала. Этот принцип заложен с основу любого пассивного фильтра звуковых частот.

Вторая схема была собранна и опробована. Элементы корректирующих цепей были напаяны непосредственно на выводы сдвоенного переменного резистора. Подобные пассивные регуляторы лучше устанавливать после предусилительного каскада и перед выходными каскадами.

Прослушивание в различных условиях продемонстрировали эффективность данной схемы, а ее применения оказалось достаточно для использования в домашних условиях на низких уровнях громкости. Тонкомпенсированный регулятор громкости позволяет сохранять тональный баланс записи без завала на низких частотах

Вместо заключения…

Хотелось бы добавить, что бесконечные споры, ведущиеся на аудиофильских форумах о правильности/неправильности применения тонкорректирующих цепей зачастую идут в разрез с общей идеологией Hi-End, сутью которого прежде всего является максимально приближенное к реальности музыкальное воспроизведение, при котором исчезают улавливаемые на слух отклонения от оригинала.

Для правильного восприятия музыкальной программы необходимо создавать при воспроизведении, которому ваши соседи явно не будут рады. Так что тонкомпенсированный регулятор громкости можно воспринимать как удачный компромисс сохранения правильного тембрального окраса музыки в домашних условиях.

В продолжение темы:
Windows 10

Многие слышали о понятии URL адреса, но немногие знают, зачем он нужен и что собой представляет.Поэтому было бы полезно разобрать несколько вопросов, связанных с темой «URL...

Новые статьи
/
Популярные