Средства технической диагностики и контроля. Диагностика аппаратных проблем Методы диагностического контроля с помощью програмных средств

Если надо что-то отремонтировать, для начала нужно определиться что вышло из строя, вот для этого и нужна диагностика. Желательно её выполнить, чтобы быть уверенным на 90 % в причине поломки.

Можно просто установить специальную программу для диагностики компьютера и выявить проблемы, как в софте, так и внутренних компонентов ПК, а не переустанавлива Windows. Всегда нужно учитывать и другие причины того, что компьютер может себя вести странным образом.

Так же заражённость вирусами или другим вредоносным софтом. Одна из самых распространённых проблем. Те же вирусы могут сами управлять поведение ПК, или же через его повреждения операционной системы. Тут всё решается помощью антивирусника и Firewall.

Не оптимизированность или не настроенность ПК:

Это тоже очень распространённая проблема. К примеру, какие-то ошибки в секторах компьютера. Тут всё решается с помощью софта для оптимизации ПК.

Сбой в железе или программах:

То есть какие-то проблемы с компонентами ПК, к примеру, с материнской платой, видео картой и так далее. Тут уже нужна программа для диагностики компьютера. Она поможет определить все или большинство проблем и в некотором случае оптимальные варианты их решения.

Программы для диагностики:

Универсальный программы то есть они проводят диагностику всех систем ПК. Они пригодятся, прежде всего, простому пользователю. Поскольку к тому же дают полное описание всех систем компьютера. У них есть отличный набор для тестирования всех компонентов ПК, как программ, так и устройств.

Сюда относят:

  • 1) SiSoftware Sandra Lite
  • 2) PC Wizard
  • 3) AIDA64
  • 4) Everest Home Edition.
  • - специальные программы - чаще всего они специализируются на работе жёстких дисков, флешек и других накопителей. Тут же лучше пользоваться ими очень осторожно и ничего не нажимать, если точно не знаешь: для чего это и как это работает. Поскольку последствия могут быть непредсказуемыми.

Диагностика аппаратных проблем.

Для начала стоит разобраться с причинами, которые могут вызвать такое явление. Как известно и пыль и неблагоприятные климатические условия ухудшают состояние компонентов ПК. Соответственно, выход железа из строя может быть вызван окислением контактов, попаданием пыли (и следственно, статического электричества) на микросхемы и разъемы, их перегрев. Перегрев также может быть вызван и плохим охлаждением.

Также все эти причины могут стать следствием скачка напряжения, нестабильностью блока питания, а также неправильного заземления. Первое, что здесь можно порекомендовать - использовать сетевые фильтры, UPS и заземление компьютера. Лучше вообще не заземлять компьютер, чем заземлять его неправильно. Заземлять корпус ПК и модем с телефонной линией надо отдельно. Не стоит заземлять корпус на отопительную батарею, например, холодильник, стиральную машину или перфоратор. В таком случае, эта уже станет фазой с разностью потенциалов. Нежелательно заземлять несколько устройств одновременно. Не рекомендуется бытовую технику подключать в один сетевой фильтр с компьютером, а вот монитор, принтер и системный блок лучше включать от одного сетевого фильтра.

Из микросхем может привести и закорачивание какого-либо провода или попаданием питания на земляной контакт. Поэтому всегда стоит следить за качеством подключения кабелей и их состоянием.

Типичные проблемы:

Запах гари, откуда он идет. Если его нет, то стоит проверить надежность подключения питания. Если проверка не помогла, то стоит включить ПК и проверить, крутятся ли вентиляторы блока питания (БП), корпуса и кулера процессора (заодно проверьте крепление кулера). Если не крутятся, и винчестер не издает характерного звука раскручивания шпинделя, то вышел из строя блок питания. Наличие напряжения на его выходе можно проверить тестером, померив величину напряжения на контактах системной платы в том месте, где жгут проводов питания, соединен с БП. Стоит подключить новый БП и проверить целостность остальных компонентов. Для начала их необходимо визуально осмотреть на предмет наличия горелых элементов.

Несмотря на то, что рабочий монитор ломается достаточно редко, стоит проверить, подаются ли на него сигналы с видеоадаптера. Для этого осциллографом на контактах 10 и 13 (земля и синхронизация соответственно) 15-контактного разъема D-Sub видеоадаптера, вставленного в материнскую плату, нужно проверить наличие рабочих сигналов.

Чтобы облегчить задачу поиска неисправного компонента, используются наиболее часто встречающиеся симптомы поломок различного оборудования. Когда процессор выходит из строя, то чаще всего на его ножках видны следы гари.

Их можно определить по подгоревшим ножкам и потемнениям в этой области. Встречаются и выходы из строя тактовых генераторов и линий задержки, а также выгорание портов.

Также иногда встречающееся явление - нарушение контакта на плате. Это может быть вызвано помещением платы расширения в слот не до конца, прогибом платы, закорачиванием контактов на обратной стороне платы на корпус, нехваткой длины проводов, идущих от БП к материнской плате.

В жестких дисках самое уязвимое место - перегревшийся контроллер и IDE-разъем. Сгоревший контроллер можно определить по потемнениям рядом с местами его крепления. Перегрев микросхемы приводит и к ухудшению контакта между контроллером HDD и гермоблоком. Механические проблемы двигателя винчестера можно определить по сильной вибрации корпуса HDD при вращении дисков. Массовые неполадки были замечены у дисков IBM серии DTLA и Ericsson (70GXP и 60GXP), Maxtor 541DX, Quantum Fireball 3, Fujitsu серии MPG.

В CD-приводах чаще всего выходит из строя оптико-механическая часть. В частности механизм позиционирования лазера и определения диска. Как правило, такая поломка вызывается неисправностью МСУ (микропроцессор системного управления), который вырабатывает управляющие сигналы, а также драйвера двигателя лазерного считывателя, который отвечает за сигнал возбуждения. Для их проверки необходимо промерить выходные сигналы на соответствующих контактах МСУ. Характерным симптомом неисправности МСУ является отсутствие перемещения лазерного считывателя при первоначальном включении питания. У флоппи-дисководов чаще всего встречаются механические поломки связанные с подъемником и прижимом дискет.

Программно-аппаратная диагностика.

Если все вышеперечисленное не помогло определить поломку, то придется перейти к программно-аппаратной диагностике. А для того, чтобы она прошла успешно необходимо точно знать, каков порядок включения устройств ПК.

Порядок загрузки компьютера.

  • 1) после включения питания БП выполняет самотестирование. Если все выходные напряжения соответствуют требуемым, БП выдает на материнскую плату сигнал Power_Good (P_G) на контакт 8 20-контактного разъема питания ATX. Между включением ПК и подачей сигнала проходит около 0,1-0,5 с.
  • 2) микросхема таймера получает сигнал P_G и прекращает генерировать подаваемый на микропроцессор сигнал начальной установки Reset. Если процессор не исправен, то система зависает.
  • 3) CPU работоспособен, то он начинает выполнять код, записанный в ROM BIOS по адресу FFFF0h (адрес программы перезагрузки системы). По этому адресу находится команда безусловного перехода JMP к адресу начала программы загрузки системы через конкретный ROM BIOS (обычно это адрес F0000h).
  • 4) начинается выполнение конкретного кода ROM BIOS. BIOS начинает проверку компонентов системы на работоспособность (POST - Power On Self Test). Обнаружив ошибку, система подаст звуковой сигнал, так как видеоадаптер пока еще не инициализирован. Проверяется и инициализируется чипсет, DMA и происходит тест определения объема памяти. Если модули памяти вставлены не до конца или некоторые банки памяти повреждены, то или система зависает или звучат длинные повторяющие сигналы из системного динамика.
  • 5) происходит разархивирование образа BIOS в оперативную память для более быстрого доступа к коду BIOS.
  • 6) инициализируется контроллер клавиатуры.
  • 7) BIOS сканирует адреса памяти видеоадаптера, начиная с С0000h и заканчивая C7800h. Если BIOS видеоадаптера найден, то проверяется контрольная сумма (CRC) его кода. Если CRC совпадают, то управление передается Video BIOS, который инициализирует видеоадаптер и выводит на экран информацию о версии Video BIOS. Если контрольная сумма не совпадает, то выводится сообщение «C000 ROM Error». Если Video BIOS не найден, то используется драйвер, записанный в BIOS ROM, который инициализирует видеокарту.
  • 8) ROM BIOS сканирует пространство памяти начиная с C8000h в поисках BIOS других устройств, таких как сетевые карты и SCSI-адаптеры, и проверяется их контрольная сумма.
  • 9) BIOS проверяет значение слова по адресу 0472h, чтобы определить, какая загрузка должна быть выполнена - «горячая» или «холодная». Если по этому адресу записано слово 1234h, то процедура POST не выполняется, происходит «горячая» загрузка.
  • 10) в случае холодной загрузки выполняется POST. Инициализируется процессор, выводится информация о его марке, модели. Выдается один короткий сигнал.
  • 11) тестируется RTC (Real Time Clock).
  • 12) определение частоты CPU, проверка типа видеоадаптера (в том числе встроенного).
  • 13) тестирование стандартной и расширенной памяти.
  • 14) присвоение ресурсов всем ISA-устройствам.
  • 15) инициализация IDE-контроллера. Если используется 40-контактный шлейф для подключения ATA/100 HDD, то появится соответствующее сообщение.
  • 16) инициализация FDC-контроллера.
  • 17) ROM BIOS ищет системную дискету или MBR жесткого диска и читает сектор 1 на дорожке 0 стороны 0, копирует этот сектор по адресу 7С00h. Далее происходит проверка этого сектора: если он оканчивается сигнатурой 55AAh, то MBR просматривает таблицу разделов (Partition Table) и ищет активный раздел, а затем пытается загрузиться с него. Если первый сектор оканчивается любой другой сигнатурой, то вызывается прерывание Int 18h и на экран выводится сообщение «DISK BOOT FAILURE, INSERT SYSTEM DISK AND PRESS ENTER» или «Non-system disk or disk error».

Что касается последнего пункта, то ошибки указанные в нем говорят о неисправности винчестера (программной или аппаратной). Теперь остается только выявить, в какой именно момент перестает работать компьютер. Если это происходит до появления сообщений на мониторе, то неисправность можно определить по звуковым сигналам. Наиболее часто встречающиеся звуковые сигналы приведены в таблице.

Таблица 1 - Звуковая сигнализация об ошибках BIOS IBM

Таблица 2 - Звуковые коды неисправностей IBM POST AMI BIOS


Стоит заметить, что звуковые сигналы могут отличаться от приведенных выше из-за различия версий BIOS. Если же и звуковые сигналы не помогли определить неисправность, то остается лишь рассчитывать на аппаратную диагностику. Она производится несколькими средствами.

Аппаратная диагностика.

Работу отдельных блоков можно проверить, дотронувшись до них рукой, чтобы проверить их нагрев. После минутного включения должны греться чипсет, процессор, чипы памяти и блоки видеокарты. Если они кажутся теплыми, то этого достаточно, чтобы сделать вывод хотя бы о том, что на эти элементы подается питание. С большой долей вероятности они должны оказаться рабочими.

Второе средство более научно и требует некоторой инженерной подготовки. Заключается оно в измерении потенциалов на различных элементах. Для этого нужен тестер и осциллограф. Желательно иметь карту разводки материнской платы, поскольку она многослойная, и прохождение сигналов не так очевидно. Начать измерения стоит с силовых элементов входных цепей и стабилизирующих и шунтирующих конденсаторов, проверить наличие +3,3 и +5 В в соответствующих местах материнской платы, работу тактовых генераторов. После этого стоит проверить наличие штатных сигналов на выводах сокета процессора. Далее проверить наличие сигналов в слотах и портах. В последнюю очередь стоит заняться логическими элементами (хотя ремонт их часто оказывается делом неразумным). Для этого потребуется знание разводки портов и слотов. Эта информация приведена в таблицах ниже.

Таблица 3 - Разводка разъема питания

Таблица 4 - Разводка портов


Третье средство диагностики - профессиональные аппаратные средства диагностики. К ним относится использование диагностических карт типа ДП-1 и комплекса PC-3000, созданных компанией «РОСК». Диагностическая плата устанавливается в свободный слот материнской платы, и после включения ПК на ее индикаторе отображается код ошибки в шестнадцатеричном виде. Применение такой платы существенно повышает вероятность локализации неисправности. Использование ДП-1 рассчитано на корректную работу процессора, а CPU выходит из строя крайне редко.

На данный момент в России диагностические карты, тестовые ROM BIOS и другие средства диагностики производятся компанией ACE Laboratory.

При аппаратной диагностике следует иметь ввиду, что в большинстве случаев выходит из строя только одно устройство, и проще всего его выявить, заменив на аналогичное, гарантированно работающее.

Что касается блоков питания и периферийных устройств, то диагностика неисправностей в них - тема отдельного разговора, но по поводу мониторов можно дать ряд советов. Достаточно часто из строя выходит промежуточный строчный трансформатор, включаемый между предоконечным и выходным транзистором строчной развертки. Основной его неисправностью, как правило, бывает короткое замыкание витков. Этот трансформатор - часть высоковольтного блока строчной развертки. Это высокое напряжение подается на ЭЛТ (Электронно-лучевую трубку). Поэтому часто отсутствие свечения на экране и отсутствие растра указывают на отсутствие высокого напряжения. Как правило, вертикальная полоса на экране также указывает на отказ блока строчной развертки. Проверить наличие высокого напряжение на ЭЛТ можно проведя рукой по поверхности экрана. Если высокое напряжение подается, то вы должны почувствовать некоторую вибрацию или потрескивания статического электричества.

Программная диагностика.

Если же компьютер все же включается, но работает нестабильно, зависает при загрузке, «выпадает» в синий экран, то это чаще всего является следствием переразгона, локального перегрева или «глючностью» памяти, а также ошибками работы HDD (к ним относится и «падение» Windows).

Стабильность их работы можно проверить под DOS, загрузившись c системной дискеты или диска. Для этого следует использовать утилиты CheckIT, PC Doctor, Memtest 86, Stress Linux, Norton Diagnostics, The Troubleshooter. Для профессионального тестирования и восстановления HDD следует использовать HDDUtility и MHDD, но они корректно работают только под MS-DOS 6.22. Первое, что требуется сделать с помощью них - проверить SMART-атрибуты состояния HDD. Также для диагностики, проверки и пометки bad-секторов можно использовать Norton Disk Doctor.

Следует помнить, что полноценную проверку железа можно произвести только под Windows, тестируя стабильность работы в burn-in тестах в течение не менее чем 24 часов. Среди таких тестов можно привести CPU Hi-t Professional Edition, CPU Stability Test, Bionic CPU Keeper, CPU Burn, Hot CPU Tester Pro, HD_Speed, DiskSpeed 32, MemTest.

Гораздо легче предупредить событие, чем исправить его последствия, поэтому гораздо легче регулярного (хотя бы раз в несколько недель) следить за параметрами выдаваемых блоком питания напряжений, смотреть SMART-параметры HDD (программы Active SMART, SMARTVision, SMART Disk Monitor), изучать температуру процессора, проверять наличие хорошего охлаждения и отсутствие посторонних звуков. Нелишним было бы и смазывание вентиляторов машинным маслом, как минимум раз в полгода.

Программные средства диагностики

Среди программных средств диагностики компьютерных сетей, можно выделить специальные системы управления сетью (Network Management Systems) - централизованные программные системы, которые собирают данные о состоянии узлов и коммуникационных устройств сети, а также данные о трафике, циркулирующем в сети. Эти системы не только осуществляют мониторинг и анализ сети, но и выполняют в автоматическом или полуавтоматическом режиме действия по управлению сетью - включение и отключение портов устройств, изменение параметров мостов адресных таблиц мостов, коммутаторов и маршрутизаторов и т.п. Примерами систем управления могут служить популярные системы HPOpenView, SunNetManager, IBMNetView.

Средства управления системой (System Management) выполняют функции, аналогичные функциям систем управления, но по отношению к коммуникационному оборудованию. Вместе с тем, некоторые функции этих двух видов систем управления могут дублироваться, например, средства управления системой могут выполнять простейший анализ сетевого трафика.

Экспертные системы. Этот вид систем аккумулирует человеческие знания о выявлении причин аномальной работы сетей и возможных способах приведения сети в работоспособное состояние. Экспертные системы часто реализуются в виде отдельных подсистем различных средств мониторинга и анализа сетей: систем управления сетями, анализаторов протоколов, сетевых анализаторов. Простейшим вариантом экспертной системы является контекстно-зависимая help-система. Более сложные экспертные системы представляют собой так называемые базы знаний, обладающие элементами искусственного интеллекта. Примером такой системы является экспертная система, встроенная в систему управления Spectrum компании Cabletron.

Анализаторы протоколов

В ходе проектирования новой или модернизации старой сети часто возникает необходимость в количественном измерении некоторых характеристик сети таких, например, как интенсивности потоков данных по сетевым линиям связи, задержки, возникающие на различных этапах обработки пакетов, времена реакции на запросы того или иного вида, частота возникновения определенных событий и других характеристик.

Для этих целей могут быть использованы разные средства и прежде всего - средства мониторинга в системах управления сетью, которые уже обсуждались ранее. Некоторые измерения на сети могут быть выполнены и встроенными в операционную систему программными измерителями, примером тому служит компонента ОС Windows Performance Monitor. Даже кабельные тестеры в их современном исполнении способны вести захват пакетов и анализ их содержимого .

Но наиболее совершенным средством исследования сети является анализатор протоколов. Процесс анализа протоколов включает захват циркулирующих в сети пакетов, реализующих тот или иной сетевой протокол, и изучение содержимого этих пакетов. Основываясь на результатах анализа, можно осуществлять обоснованное и взвешенное изменение каких-либо компонент сети, оптимизацию ее производительности, поиск и устранение неполадок. Очевидно, что для того, чтобы можно было сделать какие-либо выводы о влиянии некоторого изменения на сеть, необходимо выполнить анализ протоколов и до, и после внесения изменения.

Анализатор протоколов представляет собой либо самостоятельное специализированное устройство, либо персональный компьютер, обычно переносной, класса Нtebook, оснащенный специальной сетевой картой и соответствующим программным обеспечением. Применяемые сетевая карта и программное обеспечение должны соответствовать топологии сети (кольцо, шина, звезда). Анализатор подключается к сети точно также, как и обычный узел. Отличие состоит в том, что анализатор может принимать все пакеты данных, передаваемые по сети, в то время как обычная станция - только адресованные ей. Программное обеспечение анализатора состоит из ядра, поддерживающего работу сетевого адаптера и декодирующего получаемые данные, и дополнительного программного кода, зависящего от типа топологии исследуемой сети. Кроме того, поставляется ряд процедур декодирования, ориентированных на определенный протокол, например, IPX. В состав некоторых анализаторов может входить также экспертная система, которая может выдавать пользователю рекомендации о том, какие эксперименты следует проводить в данной ситуации, что могут означать те или иные результаты измерений, как устранить некоторые виды неисправности сети.

Несмотря на относительное многообразие анализаторов протоколов, представленных на рынке, можно назвать некоторые черты, в той или иной мере присущие всем им:

Пользовательский интерфейс. Большинство анализаторов имеют развитый дружественный интерфейс, базирующийся, как правило, на Windows или Motif. Этот интерфейс позволяет пользователю: выводить результаты анализа интенсивности трафика; получать мгновенную и усредненную статистическую оценку производительности сети; задавать определенные события и критические ситуации для отслеживания их возникновения; производить декодирование протоколов разного уровня и представлять в понятной форме содержимое пакетов.

Буфер захвата. Буферы различных анализаторов отличаются по объему. Буфер может располагаться на устанавливаемой сетевой карте, либо для него может быть отведено место в оперативной памяти одного из компьютеров сети. Если буфер расположен на сетевой карте, то управление им осуществляется аппаратно, и за счет этого скорость ввода повышается. Однако это приводит к удорожанию анализатора. В случае недостаточной производительности процедуры захвата, часть информации будет теряться, и анализ будет невозможен. Размер буфера определяет возможности анализа по более или менее представительным выборкам захватываемых данных. Но каким бы большим ни был буфер захвата, рано или поздно он заполнится. В этом случае либо прекращается захват, либо заполнение начинается с начала буфера .

Фильтры. Фильтры позволяют управлять процессом захвата данных, и, тем самым, позволяют экономить пространство буфера. В зависимости от значения определенных полей пакета, заданных в виде условия фильтрации, пакет либо игнорируется, либо записывается в буфер захвата. Использование фильтров значительно ускоряет и упрощает анализ, так как исключает просмотр ненужных в данный момент пакетов .

Переключатели - это задаваемые оператором некоторые условия начала и прекращения процесса захвата данных из сети. Такими условиями могут быть выполнение ручных команд запуска и остановки процесса захвата, время суток, продолжительность процесса захвата, появление определенных значений в кадрах данных. Переключатели могут использоваться совместно с фильтрами, позволяя более детально и тонко проводить анализ, а также продуктивнее использовать ограниченный объем буфера захвата .

Поиск. Некоторые анализаторы протоколов позволяют автоматизировать просмотр информации, находящейся в буфере, и находить в ней данные по заданным критериям. В то время, как фильтры проверяют входной поток на предмет соответствия условиям фильтрации, функции поиска применяются к уже накопленным в буфере данным.

Методология проведения анализа может быть представлена в виде следующих шести этапов:

1. Захват данных.

2. Просмотр захваченных данных.

3. Анализ данных.

4. Поиск ошибок. (Большинство анализаторов облегчают эту работу, определяя типы ошибок и идентифицируя станцию, от которой пришел пакет с ошибкой.)

5. Исследование производительности. Рассчитывается коэффициент использования пропускной способности сети или среднее время реакции на запрос.

6. Подробное исследование отдельных участков сети. Содержание этого этапа конкретизируется по мере того, как проводится анализ.

Обычно процесс анализа протоколов занимает относительно немного времени - 1-2 рабочих дня.

Большинство современных анализаторов позволяют анализировать сразу несколько протоколов глобальных сетей, таких, как X.25, PPP, SLIP, SDLC/SNA, frame relay, SMDS, ISDN, протоколы мостов/маршрутизаторов (3Com, Cisco, Bay Networks и другие). Такие анализаторы позволяют измерять различные параметры протоколов, анализировать трафик в сети, преобразование между протоколами локальных и глобальных сетей, задержку на маршрутизаторах при этих преобразованиях и т. п. Более совершенные приборы предусматривают возможность моделирования и декодирования протоколов глобальных сетей, "стрессового" тестирования, измерения максимальной пропускной способности, тестирования качества предоставляемых услуг. В целях универсальности почти все анализаторы протоколов глобальных сетей реализуют функции тестирования ЛВС и всех основных интерфейсов. Некоторые приборы способны осуществлять анализ протоколов телефонии. А самые современные модели могут декодировать и представлять в удобном варианте все семь уровней OSI. Появление ATM привело к тому, что производители стали снабжать свои анализаторы средствами тестирования этих сетей. Такие приборы могут проводить полное тестирование сетей АТМ уровня E-1/E-3 с поддержкой мониторинга и моделирования. Очень важное значение имеет набор сервисных функций анализатора. Некоторые из них, например возможность удаленного управления прибором, просто незаменимы .

Таким образом, современные анализаторы протоколов WAN/LAН/ДTM позволяют обнаружить ошибки в конфигурации маршрутизаторов и мостов; установить тип трафика, пересылаемого по глобальной сети; определить используемый диапазон скоростей, оптимизировать соотношение между пропускной способностью и количеством каналов; локализовать источник неправильного трафика; выполнить тестирование последовательных интерфейсов и полное тестирование АТМ; осуществить полный мониторинг и декодирование основных протоколов по любому каналу; анализировать статистику в реальном времени, включая анализ трафика локальных сетей через глобальные сети.

Введение

1 Этапы и процесс устранения неисправностей СВТ

1.1 Процесс поиска неисправностей

1.2 Особенности проявления неисправностей СВТ и РС

1.2.1 Системные ошибки при загрузке ОС

1.2 Ошибки при прогоне прикладных программ

2. Автономная и комплексная проверка функционирования и диагностика СВТ

2.1 Функциональный контроль АПС

2.1.1. Контроль и диагностика компонент системной платы

2.1.1.1 Контроль работы CPU и FPU

2.1.1.2 Контроль средств системной поддержки CPU

2.1.1.3 Контроль и диагностика DRAM

2.1.1.4 Контроль работы системной шины

2.1.2 Контроль и диагностика периферийных устройств АПС

2.1.2.1 Контроль и диагностика средств ввода оперативной информации

2.1.2.2 Контроль и диагностика средств вывода оперативной информации

2.1.2.3 Функциональный контроль и диагностика НЖМД

2.2 Контроль функционирования аппаратно-программных комплексов

Заключение

Список литературы

Введение

Современные компьютеры будут использовать весь спектр конструкторских решений, разработанных за всё время развития вычислительной техники. Эти решения, как правило, не зависят от физической реализации компьютеров, а сами являются основой, на которую опираются разработчики.

Анализ неисправностей СВТ;

Этапы и процесс устранения неисправностей;

Диагностика неисправностей СВТ.

Информационно-методической основой для написания работы послужили работы М.В. Васильева, В.П. Леонтьева, И.А. Орлова, В.Ф. Корнюшко, В.В. Бурляева и др.

1. Этапы и процесс устранения неисправностей

1.1. Процесс поиска неисправностей

Ремонт ВС более чем на 9 / 10 состоит из диагностики АПС и состоит из пяти этапов: анализ ситуации отказа; тестирование; ремонт; тестирование после ремонта; восстановление рабочей конфигурации и проверка функционирования.

При выполнении работы по диагностике неисправностейрекомендуется:

1) подробно документировать работу;

2) предположить одну из похожих по симптомам неисправность (идентифицировать неисправность);

3) выделить неисправное устройство (интерпретировать вид ошибки);

4) воспользоваться, если возможно, эталонной таблицей состояний ВС;

5) выделить неисправную компоненту в устройстве;

6) если симптомов несколько, - классифицировать их на первичные и вторичные (зависимые от первичных). На этапе анализа ситуации следует:

Проанализировать, в каком режиме работы АПС, при выполнении какой программы и в каком месте программы произошел отказ;

Зафиксировать симптомы неисправности:

1) состояние индикаторов РС,

2) сообщения программы (диспетчера, ОС, оболочек и т. д.),

3) звуковые сигналы, штатные и нештатные;

3. попытаться перезапустить программу;

4. перезагрузить систему ("теплый" рестарт, или "холодный" старт);

5. внимательно просмотреть, как проходят рестарт, POST-контроль;

6. проверить параметры АПС в CMOS-памяти, с помощью процедур SETUP;

7. выключить ВС, проверить качество соединений кабелей интерфейсов, подключения питания, температурный режим всех ИМС (наощупь), степень загрязненности плат;

8. если POST-программа не выполняется, перейти к локализации компоненты, используя видео- или аудио-коды, сообщаемыми POST-программой;

9. если POST-программа выполняется, - перейти к тестовой диагностике ВС. Если все было подключено верно, - вернуть ВС в исходное состояние: выключить только что установленное ПУ и/или контроллер и вновь проверить работоспособность ВС.

Если ошибка осталась, значит, компонента определена неверно, и нужно повторить анализ по пунктам. Если ошибка устранилась, следует по-очереди заменять элементы узла на заведомо исправные в следующем порядке:

Периферийное оборудование, относящееся к выделенной подсистеме (дисковая, VIDEO, коммуникации, манипуляторы и т. д.), обращая внимание на их конфигурирование;

Кабельные соединения (не спутать подключение шлейфов: выделенная цветом жила плоского шлейфа подключается к 1 контакту разъема);

Контроллер, обращая внимание на установленную конфигурацию соответственно типу, объему буферной памяти и т.д. принтера, манипулятора, дисковода и т. п.

Если ошибка осталась, значит, дело не в аппаратной, а в программной конфигурации:

Драйвер не соответствует данному конкретному устройству;

Конфликт драйверов;

Конфликт запросов прерываний;

Пересечение областей векторов прерываний в DRAM и следует тщательно проверять программную конфигурацию РС при вводе нового оборудования. При обнаружении несоответствия - откорректировать программную конфигурацию АПС.

1.2. Особенности проявления неисправностей СВТ и РС

При локализации неисправностей, возможнопоявление следующих симптомов:

1. При загрузке ОС:

Индикатор включения питания не загорается;

Операционная система не загружается;

Появляются системные ошибки при запуске;

Нет загрузки с жесткого диска.

2. При прогоне прикладных программ:

Не читает один FDD;

Не читают оба FDD;

Не пишет один FDD;

Не пишут оба FDD;

Не читает HDD;

Не пишет HDD;

FDD и/или HDD не выбираются;

РС "завис", ввод с клавиатуры заблокирован.

3. Возможные симптомы неисправности системы отображения информации. Цветной графический монитор и плата его адаптера:

Нет изображения на экране;

Нет синхронизации по кадрам;

Нет синхронизации по строкам;

Нет текстового режима, графика работает;

На экране искаженные символы;

Искаженный цвет или его отсутствие;

Нет текстового режима высокого или низкого разрешения.

4. Неисправности КЛАВИАТУРЫ:

Клавиатура не работает (заблокирована);

Клавиатура печатает неправильные символы;

Одна или несколько клавишей не работают;

Нет переключения регистров верхний/нижний и/или наоборот.

5. Неисправности ВВОДА-ВЫВОДА:

Динамик не работает;

Манипулятор не работает;

Нет загрузки с НГМД;

Нет загрузки с НЖМД.

1.2.1. Системные ошибки при загрузке ОС

1. Неисправности при включении РС. Если индикатор включения питания не загорается, следует проверить поочередно:

Наличие питающего напряжения в сетевой розетке,

Исправность штепсельного подключения РС, кабеля питания,

Исправность сетевого фильтра или устройства бесперебойного питания,

Исправность блока питания ПЭВМ.

2. Не загружается операционная система. Если нет загрузки с жесткого диска, следует попробовать повторить загрузку и внимательно пронаблюдать за процессом выполнения POST-программы, при неудаче - загрузиться со “спасательной” дискеты и протестировать НЖМД, в первую очередь - его загрузочную запись и вообще всю системную область.

Все сообщения POST-программы об ошибках принято делить на типы: аудио сигналы; коды системных ошибок на дисплее; коды ошибок ввода-вывода на дисплее; другие ошибки на экране дисплея.

Таким образом, общее количество кодов ошибок достигает сотен, и коды ошибок для каждой конкретной модели РС, точнее разновидности ROM BIOS, которым укомплектована данная модель РС, следует искать в инструкции по эксплуатации данного РС.

1.2.2. Ошибки при прогоне прикладных программ

При прогоне пользовательских программ возможны следующие ошибки. Один из дисководов НГМД не читает или не пишет. Возможные причины:

1) плохая дискета. Заменить дискету;

2) плохой дисковод. Попробовать работать с другого дисковода;

3) загрязнен разъем интерфейса на дисководе. Очистить разъем от пыли и промыть спиртом;

4) плохо или неверно подключен шлейф к дисководу. Проверить правильность подключения кабелей: разъем до перекрутки обычно должен подключаться ко второму FDD, после перекрутки - к первому.

5) неверно закоммутирован адрес дисковода FDD, или неверно установлены перемычки конфигурации дисководов на контроллере и/или дисководах. Проверить и исправить конфигурацию дисков в соответствии с инструкцией по эксплуатации контроллера и дисководов;

6) неверно установлен тип дисковода в CMOS-памяти. Проверить и, при необходимости, переустановить его через утилиту SetUp.

Неуверенное чтение данных с FDD. Возможные причины:

1) не установлен, или неправильно установлен, или установлены два терминатора на магистрали управления/данных на 5,25” FDD. Проверить и исправить: терминатор должен быть установлен только на одном, последнем FDD;

2) загрязнены головки чтения-записи НГМД. Почистить головки дисковода с помощью специального чистящего диска. Чистить головки НГМД можно только специальными жидкостями или изопропиловым спиртом. Этиловый спирт растворяет защитное покрытие дискет.

3) скорость вращения шпиндельного двигателя НГМД выходит за допустимые пределы. Протестировать НГМД программой NDiags и, при необходимости, отрегулировать скорость вращения шпиндельного двигателя.

Ни один из дисководов не читает. Возможные причины:

1) неисправность в разъеме слота подключения контроллера НГМД. Почистить разъем слота, в котором стоял контроллер дисководов, или переставить контроллер в другой слот;

2) неисправен контроллер дисководов. Отключить все, кроме одного, дисководы от контроллера, проверить запись/чтение на оставшийся дисковод, при необходимости, загружая DOS с дискеты. Если опыт оказался удачным, то, подключая по очереди остальные дисководы, определить, в какой части контроллера содержится ошибка. Можно для пробы заменить контроллер на заведомо исправный, не забыв про конфигурирование (перемычки, переключатели на плате контроллера).

Прикладная программа не выполняется, или выполняется неверно (неправильные результаты, или зависание РС в программе). Возможные причины:

1) не отлажена программа. Воспользоваться средствами отладки программ: дизайнер, дебаггер и т. д.;

2) конфликт в программной конфигурации. Проверить текущую программную конфигурацию: просмотреть файлы config.sys, autoexec.bat и карту распределения оперативной памяти в части драйверов, TSR-программ, на предмет конфликтов, при необходимости - откорректировать;

3) неисправность аппаратной части РС. Провести углубленное тестирование АПС, с помощью встроенных или внешних тест программ.

4) просмотреть сообщение BIOS об определенных ей аппаратных ресурсах РС;

5) при исполнении системных файлов IBMBIO.COM и IBMDOS.COM, проверить результаты исполнения конфигурационных файлов config.sys и autoexec.bat, на отсутствие в них логических ошибок. Для контролируемого пошагового исполнения конфигурационных файлов нужно сразу после появления на дисплее таблицы аппаратных ресурсов, еще до появления сообщения “Starting PC DOS…”, нажать клавишу F8;

6) протестировать компоненты РС с помощью сервисной платы;

7) если система с дискеты загрузилась, а с жесткого диска - нет, нужно с той же системной дискеты запустить диагностику логической структуры НЖМД, используя утилиты NDD или Scandisk и, при обнаружении ошибок, - восстановить логическую структуру диска;

8) исправить возможные нарушения загрузочной записи и системных файлов, используя утилиту SYS.COM9

9) проверить память и системный диск компьютера на отсутствие вирусных заражений (антивирусный пакет минимального размера, например, DrWeb-413, может поместиться и на системную дискету);

10) если ошибка осталась - перейти к тестированию компонент РС с использованием встроенных программ: POST (с помощью анализатора шины), ROM Diagnostics, или программ общего тестирования CheckIt, NDiags и др., запуская их с той же дискеты;

11) если ошибка носит плавающий характер, - проводить углубленное тестирование компонент АПС с использованием соответствующих программ, например PC-Doctor.

Разобранные выше симптомы неисправностей далеко не исчерпывают все возможные ошибки, возникающие при прогоне пользовательских программ, и даны только для примера симптомов ошибок. Другие ошибки будут иметь другие симптомы.

2. Автономная и комплексная проверка функционирования и диагностика СВТ

Некоторые из достаточно интеллектуальных средств вычислительной техники, такие как принтеры, плоттеры, могут иметь режимы автономного тестировании. Так, автономный тест принтера запускается без подключения к компьютеру, нажатием комбинаций клавишей на пульте его управления. Принтер, исполняя имеющуюся в его ПЗУ специальную микропрограмму, печатает диагонально все доступные ему символы, и оператор, просматривая и сравнивая полученную при этом распечатку, определяет правильность его работы в режимах различной плотности и качества печати.

Аппаратно-программная система имеет возможность автономной проверки функционирования компонент ее вычислительного ядра, используя встроенные или загружаемые тест-программы. АПС может выполнять и внешние тест-программы для ее компонент, а также тест-программы комплексного тестирования, имитирующие многозадачный и многопользовательский режимы работы АПС.

2.1 Функциональный контроль АПС

Контроль функционирования компонент специализированных АПС типа Main Frame осуществляется, во время ее работы, аппаратурными средствами (специальными схемами контроля сумматоров, счетчиков, дешифраторов, средств передачи данных и т. д.). Контроль вычислительного процесса в таких АПС выполняется специальными программными средствами, контролирующими правильность выполнения алгоритмов вычислений, допустимость получаемых результатов, их достоверность. Чаше всего такой контроль использует метод двойного пересчета отдельных частей общей задачи. При разработке специализированных АПС разрабатываются одновременно и специальные тест-программы их комплексного тестирования. Комплексные тест-программ типа ТКП (Тесты Контрольно-Проверочные), должны периодически запускаться обслуживающим персоналом, во время планово-предупредительного и текущего технического обслуживания АПС. Поэтому, для функционального контроля РС используются тест-программы общего применения , такие как рассмотренные выше CheckIt, NDiags, Sandra и т. п.

2.1.1. Контроль и диагностика компонент системной платы

Системные платы РС, в зависимости от их модификаций, могут содержать либо только собственно вычислитель (CPU с его системной обвеской, оперативную память и систему шин со своими контроллерами и формирователями), либо дополнительно - некоторые из контроллеров периферийных устройств (НЖМД, видеоконтроллер, коммуникационные порты, аудиоконтроллер, сетевые средства межкомпьютерной связи и т. д.). Это нужно иметь в виду и, когда разговор пойдет о контроле и диагностике системной платы , то будет подразумеваться системная плата минимальной конфигурации, без интегрированных в нее контроллеров периферийных устройств.

2.1.1.1 Контроль работы CPU и FPU

Функциональный контроль центрального процессора РС происходит первым и обязательно - при каждом выполнении POST-программы. При этом тестируется файл регистров процессора, его переключения из режима RМ в PM и обратно, и его реакция на запросы прерывания. CPU, как известно, имеет собственную микропрограмму самотестирования, которая запускается автоматически, если CPU достаточно долго находится в режиме простоя (Ti Idle). Контроль функционирования CPU можно проводить специально, с использованием внешних тест-программ. Так, если в программе CheckIt выбрать пункт меню Tests, а в его контекстном меню пункт System Board, то этот тест проверит в части микропроцессора:

Общие функции CPU (General Function),

Ошибки по прерывания CPU (Interrupt Bug),

32-разрядное умножение (32-bit Multiply),

Защищенный режим работы (Protected Mode),

Арифметические функции FPU (NPU Arithmetic Functions),

Тригонометрические функции FPU (NPU Trigonometric Functions),

Функции сравнения FPU (NPU Comparison Function).

Если в программе NDiags выбрать пункт СИСТЕМА/ТЕСТ СИСТЕМНОЙ ПЛАТЫ, то тест-программа проведет: общий тест ЦПУ, тест регистров ЦПУ, арифметический тест ЦПУ, тест защищенного режима работы ЦПУ.

Если в программе PC-Doctor выбрать пункт Diagnostics/CPU/Coprocessor, то будут выполнены тесты: CPU Registers, CPU Arithmetic’s, CPU Logical Operations, CPU String Operations, CPU Interrupt/Exceptions (/исключение), CPU Buffer/Cache, CPU C&T/Cyrix Specific (если ЦПУ их поддерживает), CoProc Registers, CoProc Commands, CoProc Arithmetic’s, CoProc Transcendental, CoProc Exceptions, CoProc Cyrix/IIT.

Как видно, самый большой набор проверок предлагает программа PC-Doctor.

2.1.1.2 Контроль средств системной поддержки CPU

Тестирующие способности системной поддержки процессора у программы CheckIt весьма скромные. Если в программе CheckIt выбрать пункт меню Tests, а в его контекстном меню пункт System Board, то этот тест проверит из средств системной поддержки CPU только контроллер(ы) DMA и контроллер(ы) прерываний (Interrupt Controllers).

ПрограммаNDiags, при выборе пункта меню СИСТЕМА/ТЕСТ СИСТЕМНОЙ ПЛАТЫ,из устройств системной поддержки процессора тестирует контроллер ПДП и контроллер прерываний.

ПрограммаPC-doctor в пункте Diagnostics/Motherboard тестирует те же средства системной поддержки процессора контроллер прерываний и контроллер ПДП.

2.1.1.3 Контроль и диагностика DRAM

Оперативная память персонального компьютера выполняется, как известно, на микросхемах динамического типа, что и соответствует аббревиатуре DRAM - Dynamics-Random-Access Memory (динамическая память произвольного доступа). Запоминающими элементами таких микросхем являются элементарные конденсаторы, образованные плавающими затворами полевых транзисторов. Эти переходы могут находиться в заряженном (логическая единица) или разряженном (логический нуль) состояниях.

Таким образом, динамическая память имеет склонность к искажениям отдельных бит информации. Это может иметь фатальные последствия для компьютера, т. к. в DRAM хранятся как данные, так и рабочие программы, и сама операционная система. Искажение одного бита в машинной команде может привести к тому, что, вместо операции чтения выполнится операция записи, которая может испортить данные, программу и даже саму ОС.

Именно поэтому динамическая оперативная память снабжается схемой паритетного контроля - свертки каждого записанного байта по модулю-2. В ответственных ЭВМ используются коды, исправляющие ошибки, например, код Хемминга. При записи, каждый байт информации сопровождается контрольным разрядом, вырабатывающимся схемой свертки, а при чтении, той же схемой свертки каждый байт проверяется на четность и, в случае нарушения паритета, вырабатывается немаскируемое прерывание, формирующее сообщение об ошибке DRAM. В этом случае автоматическое выполнение дальнейших операций блокируется и на экране дисплея появляется сообщение: Error Parity DRAM. System Halted (Ошибка четности динамической памяти. Система остановлена). Контроль работоспособности оперативной памяти РС выполняется соответствующими секциями POST-программы при каждом включении питания компьютера, или при “холодном” рестарте системы (нажатие кнопки RESET).

При появлении симптома ошибки DRAM, следует перезагрузить операционную систему и попытаться снова запустить ту же прикладную программу. Если ошибка не повторится, то этот случай классифицируется как одиночный сбой. Если же ошибка повторяется, то это - симптом жесткой ошибки. В таком случае следует отключить механизм выработки NMI и запустить программу диагностики ошибок памяти, например, CheckIt/Tests/Memory. Можно воспользоваться и услугами программы NDiags, выбрав пункт меню ПАМЯТЬТест основной (базовой) памяти, иТест расширенной памяти, а если конфигурация предусматривает и дополнительную память, то и ее тест. NDiags протестирует выбранную память следующими шаблонами:

Записью и проверкой нулей во все разряды всех ячеек проверяемой памяти,

Записью и проверкой единиц во все разряды всех ячеек проверяемой памяти,

Пробегом и проверкой единицы по всем разрядам по-очереди в каждом адресе,

Пробегом и проверкой нуля по всем разрядам по-очереди в каждом адресе,

Записью и проверкой кода 10101010 в каждый адрес (шахматный код),

Записью и проверкой кода 01010101 в каждый адрес (инверсный шахматный код).

Обе эти программы достаточно подробно тестируют DRAM, но программа CheckIt позволяет протестировать память как минимальным (Quick Memory Test Only), так и расширенным набором тестов и даже повторить тестирование не один раз, а до 999 раз, чтобы обнаружить плавающие ошибки памяти. Кроме того, программа CheckIt позволяет локализовать ошибку памяти до компоненты (ИМС или модуля SIMM).

Тестирование памяти с помощью программыPC-doctorвыполняется при выборе пункта Diagnostics/RAM Memory.

Программа предлагает выбрать режим тестирования:

Fast - быстрый, по одному проходу каждого теста,

Medium - средний, по 10 раз,

Heavy - тяжелый, по 20 раз,

Тип тестирования:

Pattern - 18-ти шаблонный,

Address - по адресным линиям выборки ИМС,

Bus Throughput - случайными сигналами выборки,

Code Test - случайными кодами.

Base - базовую память до 640 КБ.

Extended - расширенную, до 16 МБ.

Expanded - дополнительную, от 1 до 32 МБ,

UMB - блок высшей памяти, от 1 до 1,064 МБ.

Таким образом, можно тестировать не всю, а только выбранные участки памяти. Временные характеристики оперативной памяти под Windows прекрасно определяются с помощью программы Sandra, но если память неисправна, или ошибается, Sandra просто откажется ее тестировать.

2.1.1.4 Контроль работы системной шины

Все типы системной шины, от ISA до PCI и USB, формируются из локальной шины центрального процессора, с помощью шинных формирователей и контроллеров системной шины. Для более подробной локализации неисправностей системной шины можно зациклить начальные секции POST-программы и просматривать осциллографом адресные сигналы, сигналы передачи данных по системной шине и сигналы управления шиной: запрос и подтверждение захвата шины, состояние линий запросов прерываний, сигналы циклов шины - IOR, IOW, MemR, MemW, Lock, Unlock и т. д. Бегло просмотреть исправность шинных формирователей можно, если замерить и сравнить с таблицей эталонных состояний уровни напряжений на всех контактах разъемов слотов расширения в режиме, оговоренном таблицей эталонных состояний.

2.1.1.5 Контроль ROM BIOS и CMOS -памяти

ПрограммаCheckIt на проверку и тестирование ROM DIOS не ориентирована, но может протестировать счетчик часов реального времени, если выбрать пункт меню Tests/Real Time Clock. Этот тест состоит из сравнения реального времени со временем DOS - Compare Real-Time Clock time to DOS time, сравнения реальной даты с датой DOS - Compare Real-Time Clock date to DOS date, сравнения истекшего времени - Compare Elapsed Time.

Программа NDiags в пункте меню СИСТЕМА/ТЕСТ СИСТЕМНОЙ ПЛАТЫ содержит окно проверки часов реального времени (ЧРВ), проверка которых состоит из проверки выработки сигнала запроса прерывания от ЧРВ и теста интервального таймера DOS.

Если выбрать пункт СИСТЕМА/СТАТУС CMOS, то будет проверено:

Состояние батареи питания CMOS,

Часы текущего времени в CMOS,

Опрос контроллера жесткого диска на соответствие его параметров записанным в CMOS ,

Правильность конфигурации оперативной памяти,

Правильность аппаратной конфигурации,

Правильность контрольной суммы CMOS-памяти.

Программа PC-doctor, в пункте Diagnostics/System Board, содержит контекстное меню, в которое входят и пункты проверки ROM BOIS, CMOS и RTC Clock:

System Timer - проверка прерываний от интервального таймера DOS,

BIOS Timer - сравнение DOS-таймера с таймером часов времени,

RTC Clock (счетчик часов в системе CMOS), проверяет правильность обновления счетчика, период повторения меток прерываний от часов, прерывания от RTC-будильника и соответствие текущих часов и даты

CMOS RAM - проверяет память CMOS шаблонным тестом, как оперативную.

2.1.2 Контроль и диагностика периферийных устройств АПС

Для проверки периферийных устройств в комплексе с центральным вычислителем, следует использовать программы комплексного тестирования.

2.1.2.1 Контроль и диагностика средств ввода оперативной информации

Контроллер клавиатуры тестируется POST-программой перед загрузкой операционной системы. Специальная секция POST-программы, после сброса и инициализации клавиатуры, проверяет отсутствие “залипших” клавишей. Как известно, удержание клавиши в нажатом состоянии, через небольшой период времени, который может быть задан специально в пункте Advanced CMOS SetUp/Typematic Rate Delay (установка расширенных параметров CMOS/время задержки автоповтора) утилиты SETUP, заставляет контроллер клавиатуры повторять ввод того же символа с заданной частотой. “Залипшая” клавиша приводит к тому же эффекту, что и фиксируется POST-программой с выдачей видео кода типа хх 301, где хх- порядковый номер “залипшей”клавиши.

Программа CheckIt в пункте меню Tests/Input Devices/Keyboard предназначена для проверки клавиатур РС/ХТ, АТ и расширенной в режимах:

Press Each Key - проверка срабатываний всех клавишей,

Typematic Repeat Test - проверка автоповторов при удерживании нажатой клавиши,

Keyboard Lights Test - проверка индикаторов клавиатуры.

Раскладка клавишей по мембране весьма специфична для каждой модели клавиатуры, так что, в этом случае целесообразнее просто заменить клавиатуру целиком.

Если же в клавиатуре шилдового типа обнаружена неисправность группы клавишей , то вероятность неисправностей всех клавишей этой группы маловероятна. Вероятнее всего, дефект заключен в отказе дешифратора строк матрицы клавишей, или в отказе одного из информационных входов контроллера, либо в обрыве связи этой группы клавишей с выходом дешифратора строк или информационным входом контроллера. Для локализации подобной неисправности нужно, прежде всего, по принципиальной схеме клавиатуры разобраться, как организована в ней матрица клавишей.

Если окажется, что вся неисправная группа принадлежит одному столбцу и кроме них, в том же столбце нет исправных клавишей, тогда, вероятно, неисправен информационный вход контроллера, связанный с эти столбцом, или оборвалась связь его со столбцом клавишей. Второе предположение также проверяется мультиметром. Для проверки первого предположения нужно включить компьютер и проверить осциллографом наличие отрицательных импульсов на этом входе контроллера при нажатой одной из клавишей этого столбца и если они есть - придется заменить ИМС контроллера.

Ошибка при проверке автоповтора свидетельствует о неисправности контроллера клавиатуры, установленного на плате клавиатуры.

Ошибки при проверке индикаторовтребуют, для их локализации, анализа работы их схем. Светодиоды индикаторов получают питание от источника +5 В, ток через них ограничивается специальными резисторами, а протекание тока или его отсутствие управляется состоянием усилительных элементов (часто - ИМС инверторов). Инверторы, в свою очередь, управляются непосредственно выходами соответствующих портов контроллера. Если не зажигается или не гаснет индикатор, нужно проверить логическим пробником или мультиметром подачу на него питания +5 В, затем соответствие падения напряжения на светодиоде его характеристике, падение напряжения на токоограничительном резисторе, затем на выходе и входе инвертора, наконец, на соответствующем выходе контроллера.

Программа NDiags выполняет те же тесты (кроме теста автоповтора), а при проверке нажатия клавишей дополнительно высвечивает скан-код нажатой клавиши. Это может быть важно, если все клавиши срабатывают, но путают скан-коды. Это может быть следствием нарушения таблицы перевода кода сканирования матрицы клавишей в скан-код клавиатуры, находящейся в ПЗУ контроллера клавиатуры. Этот дефект может возникать и вследствие некорректного ремонта клавиатуры, когда ИМС контроллера клавиатуры была заменена на ИМС контроллера от клавиатуры другого типа.

Программа PC-Doctor в пункте меню Diagnostics/System Board/Keyboardпроводит тестирование контроллера клавиатуры, точнее - его части, расположенной на системной плате, в режимах:

Completed - укомплектованность, наличие,

KBD Power-On Self test - самотестирование по включению питания,

KBD IRQ Test - проверка выработки запроса прерывания IRQ1 от клавиатуры,

KBD Interface Test - проверка работы интерфейса клавиатуры.

В пункте Interactive Tests/Keyboard содержатся три теста:

Keyboard Keys - тест нажатия клавишей с индикацией скан-кодов,

Keyboard LEDs - тест светодиодных индикаторов состояния клавиатуры,

Keyboard Repeat - тест автоповтора.

Для проверки манипуляторов “мышь” можно воспользоваться файлом теста манипулятора (test.exe), обычно имеющимся на дистрибутивной дискете с драйвером мыши. Тест позволяет проверить функции манипулятора и его настройки, такие как начальная позиция курсора мыши, область и скорость перемещения манипулятора, символ, идентифицирующий курсор и т. д. Можно использовать и тест-программы общего тестирования.

Программа CheckIt предоставляет в пунктах меню:

Tests/Input Devices/Mouse - тестирование манипулятора мышь,

Tests/Input Devices/Joystick - тестирование игрового манипулятора.

При тестировании мыши программа предлагает проверки:

Press each mouse button - проверка нажатия кнопок мыши,

2.1.2.2 Контроль и диагностика средств вывода оперативной информации

Наличие, исправность портов ввода-вывода и самодиагностика видеоконтроллера (видеокарты) тестируется POST-программой перед загрузкой операционной системы. Подробное тестирование видеомонитора в автоматическом режиме без участия оператора невозможно, т. к. сама программа не может проверить правильность отображения шрифтов, линейность развертки, цветовую палитру, правильность отработки атрибутов символов и т. д. Тест-программа только генерирует и выводит на экран монитора соответствующие картинки, снабжая изображение указаниями признаков правильной работы, а оператор, выполняя указания программы, должен отвечать программе - соответствует ли изображение требованиям программы.

Встроенная программа ROM Diagnostic, программы сервисных плат RACER, ROM&DIAG и комплекса PC-tester содержат соответствующие пункты проверки видеоподсистемы РС, но, в силу ограниченности емкости их памяти, полноценную проверку организовать не могут. Поэтому, для более тщательной проверки качества видеосистемы следует воспользоваться внешними (загружаемыми) тест-программами.

Программа CheckIt имеет пункт меню Tests/Video, который состоит из трех основных частей: Video RAM - для автоматической проверки видео-памяти и аппаратных средств подкачки; Text - проверяет все текстовые режимы, доступные данному РС. На каждом экране, в левом верхнем углу отображаются название шага, режим экрана и номер текущего шага. Что должен оператор увидеть на экране, сообщается перед началом каждой группы режимов и оператор, выполняя эти задания, должен сообщить программе, соответствует ли изображение требованиям программы, на каждом шаге теста; Graphics - проверяет графические режимы работы видеосистемы. Вывод сетки позволяет оценить линейность горизонтальной и вертикальной разверток, а следующим тестом - выводятся 6 экранов с цветными блоками; цвет каждого блока должен соответствовать надписи о его цвете. Это позволяет оценить правильность работы цветообразующих узлов видеокарты и монитора.

Метод замены подозреваемого устройства на заведомо исправное (видеокарта, монитор) не может быть рекомендован, т. к. есть серьезный риск испортить исправное устройство. Если предварительная локализация окажется неправильной, а вторая составляющая видеоподсистемы имеет серьезный дефект, например, высокое напряжение на входах или выходах интерфейса, то замена первой компоненты может повлечь за собой выход из строя замененной исправной компоненты.

Методы тестирования подобные программе CheckIt предлагает и программа NDiags,в пункте меню Видео, отличаясь только несколько большим набором режимов тестирования.

Программа PC-doctor отличается углубленностью режимов тестирования. В пункте меню Diagnostics/Video Adapter предлагаются пункты:

Video Memory - шаблонное тестирование видеопамяти,

Video Pages - тестирование восьми видеостраниц,

VGA Controller Registers - тестируются регистры контроллера, и если обнаружена версия видеокарты VESA или SVGA, то и в их стандартах,

VGA Color-DAC Registers - тестируются 6-битовые регистры цветовых составляющих, всего с палитрой из 262144 цветовых оттенков.

В пункте меню Interactive Tests предлагаются тесты:

Character Sets - 12 модификаций в текстовых и графических режимах,

Color Palettes - 12 модификаций в графических режимах цветовой палитры,

Monitor Quality - предлагает свое контекстное меню:

Solid Block - чисто белый экран высокой яркости,

Flashing Block - белый экран с атрибутом мерцания,

Vertical Lines - вывод чередующихся черных и белых вертикальных полос,

Horizontal Lines - вывод чередующихся черных и белых горизонтальных полос,

Checkerboard - на экран выводится черно-белая шахматка,

Flashing Checkerboard - на экран выводится черно-белая шахматка с мерцанием,

VGA Functionality со своим подменю:

Horizontal Pan - на экран выводится рамка с качанием по горизонтали,

Vertical Pan - на экран выводится рамка с качанием по вертикали,

Display Start Address - периодическое переключение 1-й и 2-й страниц,

Split Screen - периодический скроллинг двух страниц по вертикали,

Split Screen with Horizontal Pan - периодический скроллинг двух страниц по горизонтали,

512 Display Characters - вывод 512 ASCII-символов в стандартах 9х16 и 8х8 пикселей.

2.1.2.3 Функциональный контроль и диагностика НЖМД

Если в подсистеме жесткого диска (контроллере, накопителе, соединительных кабелях и т. д.) возникает неисправность, она может быть обнаружена при выполнении соответствующих секций POST-программы, при этом на экран дисплея выводится POST-код ошибки. Ошибки с кодами 17хх - свидетельствуют о неисправностях накопителей и контроллеров с интерфейсом ST-506/412, с кодами 104хх - о неисправностях тех же устройств с интерфейсом ESDI, с кодами 210хх - о неисправностях накопителей и HOST-адаптеров SCSI. Конкретные коды ошибок и их описание можно найти в специальной литературе.

Во многих случаях диск не находится потому, что:

Неправильно установлен тип диска в CMOS-памяти;

Неправильно установлена конфигурация диска (перемычка статуса накопителя);

Неправильно подключен кабель управления к НЖМД;

- "залипание" дисков и головок.

Современные дисководы имеют служебную запись параметров на самом диске, в этом случае, они могут быть считаны и установлены в CMOS самой утилитой SetUp, если выбрать в меню SetUp пункт Auto Detect Hard Disk.

Способов задания адреса устройства на канале шины АТА существует два - с помощью кабельной выборки или явным заданием адреса на каждом из устройств. Режим кабельной выборки включается установкой на диске перемычки CS (Cabel Selekt). В этом случае оба устройства на шине конфигурируются одинаково - в режим CS, а адрес устройства определяется его положением на специальном кабеле-шлейфе. В отличие от обычного кабеля, у которого все одноименные контакты всех разъемов равнозначны, в этом кабеле контакт 28 (CSEL) для устройства-0 (Master) заземлен через хост-адаптер, а для устройства-1 (Slave) - не подключен (перерезан в кабеле-шлейфе). Кабельная выборка будет работать, если ее применение поддерживается и задано на всех устройствах данного канала шины, включая хост-адаптер. Недостатком такой выборки является привязка физического подключения диска к кабелю: диск-0 должен быть подключен к ближнему от адаптера разъему шлейфа, а диск-1 - к дальнему.

Режим явной адресации использует обычный «прямой» кабель. В этом случае перемычка в положение CS не устанавливается, а адрес каждого из устройств задается перемычками, состав которых у разных моделей НЖМД варьируется. Достаточно указать устройству его номер (0 или 1) или роль (Master или Slave), но в устройствах, разработанных до принятия стандарта АТА, ведущему (Master) диску еще «подсказывали» наличие ведомого (Slave). Таким образом, на дисках IDE можно увидеть следующие джамперы:

M/S - если на шине присутствует лишь одно устройство, оно должно конфигурироваться как Master. Если устройств два, то второе должно конфигурироваться как Slave. Иногда джампер того же назначения обозначается как «C/D» (диск C:/диск D:), но для второго канала IDE такое название уже некорректно.

SP (Slave Present), DSP (Drive Slave Present) - устанавливается на диске-0 (Master) для указания на присутствие диска-1 (Slave). Если этот переключатель установлен, а устройство-1 не подключено, BIOS выдаст сообщение об ошибке.

ACT (Drive Active) - устанавливается на диске-0 (встречается редко).

Для полностью АТА-совместимых дисков (например, модели Seagate), джамперы SP DSP не требуются и отсутствуют. Перемычка ставится только на диске-0, а наличие диска-1 Master определит автоматически.

Кабель управления должен подключаться к контроллеру (или адаптеру) и дисководу с соблюдением нумерации контактов разъемов: первый провод шлейфа, обычно отличающейся цветом, - к первым контактам разъемов. В противном случае диск опознаваться не будет, и признаком такой ошибки является постоянное свечение индикатора "Дисковод выбран".

Современные версии PnP BIOS и соответствующие им диски позволяют не указывать тип IDE диска, если выбрать в SetUp опцию AUTO, для автоматической установки его типа во время POST-процедуры, по ответу на команду идентификации диска. Накопители на жестких дисках, подключаемые к внешним интерфейсам шин USB и FireWire конфигурируются уже на этапе загрузки операционной системы.

Надежность считывания информации с диска в большой степени зависит от точности позиционирования. Позиционирование, обеспечиваемое сервоприводом, особенно с выделенной сервоповерхностью , может быть не оптимальным для каждой головки и требовать коррекции. Интеллектуальные контроллеры хранят карту отклонений для всех цилиндров и головок, создается и корректируется в процессе работы.

Предсказуемые отказы (Predictable Failure) являются следствием постепенного ухода параметров от номинальных значений, когда этот уход переходит некоторый порог. Если специально контролировать такие параметрами диска, как время разгона шпиндельного двигателя до нужной скорости, время, затрачиваемое диском на позиционирование, процент ошибок позиционирования, высота полета головок, производительность (зависящая от числа вынужденных повторов для успешного выполнения функций), количество использованных резервных секторов и других параметров, то становится возможным предсказание отказов. Сообщение о приближении отказов операционной системе и пользователю позволяет принять необходимые меры для предотвращения потери данных на диске.

Целям предупреждения отказов служит технология S.M.A.R.T. (Self-Monitoring Analysis and Reporting Technology - технология самонаблюдения, анализа и сообщения), применяемая в современных накопителях. Эта технология, разработанная фирмой Seagate, имеет корни в технологии IntelliSafe, фирмы Compaq, и PFA (Predictive Failure Analysis - анализ предсказуемых отказов), фирмы IBM.

Задачи слежения за параметрами накопителя при этом возлагаются на контроллер, а программному обеспечению остается только периодически проверять, все ли в порядке в накопителе, или приближается время отказа. Спецификации S.M.A.R.T. существуют в двух версиях - для интерфейсов ATA и SCSI, которые различаются как по системам команд, так и по способам сообщений о состоянии накопителя. Конечно, остаются непредсказуемые отказы (Non-Predictable Failure), которые случаются внезапно, но они вызываются, чаще всего, отказами электронных компонент накопителя, под действием импульсных помех, или от механических узлов накопителя - вследствие внешних вибраций и ударов. При соблюдении же правил эксплуатации накопителей их вероятность не столь велика, как предсказуемые отказы.

2.2 Контроль функционирования аппаратно-программных комплексов

Аппаратно-программные комплексы, как известно, строятся на комплексе АПС и, кроме самостоятельного тестирования входящих в него АПС, могут быть проверены на функционирование в комплексе, с помощью комплексных тестов. Примеры таких комплексных тестов - программы СКАТ (Система Комплексного Автоматизированного Тестирования) и АИСТ (Автоматизированная Интерактивная Система Тестирования), которые запускаются, по специальному заданию оператора. Эти системы выполняют до 120 одновременно решающихся комплексом вычислительных задач, на фоне разнообразных операций ввода-вывода на обобщенных для всего комплекса периферийных устройствах.

Это самый тяжелый режим работы комплекса. При возникновении отказов, сбоев, конфликтных ситуаций, СКАТ автоматически переходит в режим изоляции , постепенно, по-очереди, выключая из работы отдельные составляющие комплекса (общие периферийные устройства, отдельные АПС, входящие в комплекс), - до устранения обнаруженных коллизий. Режим изоляции повторяется несколько раз, с другим порядком исключения компонент комплекса. Выделенные при этом сбойные компоненты комплекса из работы и тестирования автоматически исключаются, а в конце тестирования СКАТ распечатывает обобщенные результаты теста, для анализа их оператором. Параметры тестирования и режима изоляции заранее задаются оператором в диалоге со СКАТ, или могут использоваться установки этих параметров, по умолчанию.

АИСТ имеет особенность в том, что, при обнаружении ошибок функционирования, сразу, не прекращая работы, сообщает оператору - где, когда, в каком режиме обнаружены нарушения функционирования. Оператор, в свою очередь, также, не прекращая работы комплексной
тест-программы, может внести в режим тестирования свои коррективы, для локализации мест неисправностей. В конце работы весь протокол тестирования распечатывается.

Заключение

Таким образом, поиск неисправностей целесообразно проводить от более простых элементов к более сложным и дорогостоящим по заранее составленному плану. Предпочтителен метод последовательного исключения подозреваемых в отказе компонентов, если имеются заведомо исправные компоненты для замены.

Для выбора метода диагностики и определения первичных и вторичных симптомов отказа необходимо уметь классифицировать неисправность, т. к. первичный отказ часто вызывает целый спектр отказов вторичных, являющихся следствием первичного и затеняющих причину неисправности.

8. В.П. Леонтьев. Новейшая энциклопедия персонального компьютера 2003. "ОЛМА-ПРЕСС, М., 2003.

9. И.А. Орлов, В.Ф. Корнюшко, В.В. Бурляев. Эксплуатация и ремонт ЭВМ, организация работы вычислительного центра. "Энергоатомиздат", М., 1989.

10. Б. Богумирский. Эффективная работа на IBM PC в среде Windows 95. "ПИТЕР", СПб, М., Харьков, Минск. 1997.

11. Ю.М. Платонов, Ю.Г. Уткин. Диагностика, ремонт и профилактика персональных компьютеров. М.,”Горячая линия-Телеком”, 2010.

Способы функционального контроля

Функциональный контроль определяет способность правильного выполнения функций, возлагаемых на контролируемый объект, и осуществляется путем сравнения с заданными значениями выходных состояний объекта контроля. При этом может выполняться анализ и обработка результатов сравнения, диагностирование и поиск дефектов.

Под техническим обслуживанием понимают контроль технического состояния средств вычислительной техники (СВТ) и определение комплекса технологических операций необходимых для поддержания его работоспособного состояния. Вид технического обслуживания определяется периодичностью и комплексом технологических операций по поддержанию эксплуатационных свойств СВТ.

Виды технического обслуживания СВТ:

· Регламентированное техническое обслуживание должно выполняться в объеме и с учетом наработки, предусмотренном в эксплуатационной документации на СВТ, независимо от технического состояния.

· Периодическое техническое обслуживание должно выполняться через интервалы времени и в объеме, установленными в эксплуатационной документации на СВТ.

· Техническое обслуживание с периодическим контролем должно выполняться с установленной в технологической документации периодичностью контроля технического состояния СВТ и необходимым комплексом технологических операций, зависящих от технического состояния СВТ.

· Техническое обслуживание с непрерывным контролем должно выполняться в соответствии с эксплуатационной документацией на СВТ или технологической документацией по результатам постоянного контроля за техническим состоянием СВТ.

Виды контроля компьютерных систем и комплексов

Контроль технического состояния СВТ может выполняться в статическом или динамическом режимах.

При статическом режиме контрольные значения напряжений и частоты синхроимпульсов остаются постоянными в течение всего цикла профилактического контроля. При динамическом режиме предусматривается периодическое их изменение.



Различают следующие виды контроля:

1 Профилактический контроль;

2 Автоматический контроль

3 Самопроверка.

Любой вид контроля может осуществляется аппаратурным и программным путями.

Аппаратурный контроль проводится с помощью специальной аппаратуры, контрольно-измерительных приборов, стендов, программно-аппаратных комплексов (ПАК) и т.д. Программный контроль осуществляется с помощью специализированного программного обеспечения (ПО).

Работы по устранению неисправностей при профилактическом контроле можно разбить на следующие этапы:

· анализ характера неисправностей по текущему состоянию СВТ;

· контроль параметров окружающей среды и меры по устранению их отклонений;

· локализация ошибки и определение места неисправности с помощью аппаратурных и программных средств СВТ и с помощью дополнительной аппаратуры;

· устранение неисправностей;

· возобновление решения задачи.

Для осуществления технического обслуживания (ТО) создается система технического обслуживания (СТО). В настоящее время наибольшее распространение получили следующие виды СТО:

1 Планово-предупредительное обслуживание;

2 Обслуживание по техническому состоянию;

3 Комбинированное обслуживание.

Планово-предупредительное обслуживание основано на календарном принципе и реализует регламентированное и периодическое технические обслуживания. Эти работы выполняются с целью поддержания устройств СВТ в исправном состоянии, выявлении отказов в оборудовании, предупреждении сбоев и отказов в работе СВТ.

Система включает следующие виды технических обслуживания:

· контрольные осмотры (КО);

· ежедневные ТО (ЕТО);

· еженедельные ТО;

· двухнедельные ТО;

· декадные ТО;

· ежемесячные ТО (ТО1);

· двухмесячные ТО;

· полугодовые или сезонные (СТО);

· годовые ТО;

КО, ЕТО СВТ включает осмотр устройств, прогон теста быстрой проверки работоспособности устройств, а также работы предусмотренные ежедневной профилактикой всех внешних устройств (чистка, смазка и т. д.).

Во время двухнедельного ТО предусматривается прогон диагностических тестов, а также все виды двухнедельных профилактических работ, предусмотренных для внешних устройств.

При ежемесячном ТО предусматривает более полная проверка функционирования СВТ с помощью всей системы тестов, входящих в состав ее программного обеспечения. Проверка производится при номинальных значениях источников питания профилактическом изменении напряжения на + 5%. Профилактическое изменение напряжения позволяет выявить наиболее слабые схемы системы. Обычно схемы должны сохранять свою работоспособность при изменении напряжения в указанных пределах. Однако старение и другие факторы вызывают постепенное изменения рабочих характеристик схем, которые могут быть выявлены на профилактических режимах.

Проверка СВТ с профилактическим изменением напряжения выявляет прогнозируемые неисправности, благодаря чему уменьшается количество труднолокализуемых неисправностей, приводящих к сбоям.

Во время ежемесячной профилактики выполняются все необходимые работы, предусмотренные в инструкции по эксплуатации внешних устройств.

При полугодовом (годовом) ТО (СТО) проводятся те же работы, что при ежемесячном ТО. А также все виды полугодовых (годовых) профилактических работ: разборку, чистку и смазку всех механических узлов внешних устройств с их одновременной регулировкой или заменой деталей. Кроме этого, производится осмотр кабелей и питающих шин.

Метод технического обслуживания СВТ определяется совокупностью организационных мероприятий и комплексом технологических операций по техническому обслуживанию.

Методы технического обслуживания подразделяются:

1 По признаку организации:

· Фирменный метод заключается в обеспечении работоспособного состояния СВТ предприятием-изготовителем, проводящим работы по техническому обслуживанию и ремонту СВТ собственного производства.

· Автономный метод заключается в поддержании работоспособного состояния СВТ в период эксплуатации, при котором техническое обслуживание и ремонт СВТ пользователь выполняет своими силами.

· Специализированный метод заключается в обеспечении работоспособного состояния СВТ предприятием сервиса, проводящим работы по техническому обслуживанию и ремонту СВТ.

· Комбинированный метод заключается в обеспечении работоспособного состояния СВТ пользователем совместно с предприятием сервиса, либо с предприятием-изготовителем и сводится к распределению между ними работ по техническому обслуживанию и ремонту СВТ.

2 По характеру выполнения:

· При индивидуальном ТО обеспечивается обслуживание одного СВТ силами и средствами персонала данного СВТ. В состав комплекта оборудования для этого типа ТО входят:

· аппаратура контроля элементной базы СВТ и электропитания:

· контрольно-наладочная аппаратура для автономной проверки и ремонта средств СВТ;

· комплект электроизмерительной аппаратуры, необходимой для эксплуатации СВТ;

· комплект программ (тестов) для проверки работы СВТ;

· инструмент и ремонтные принадлежности;

· вспомогательное оборудование и приспособления;

· специальная мебель для хранения имущества и оборудование рабочих мест оператора и наладчика элементной базы.

Все перечисленное оборудование предусматривает возможность оперативного поиска и устранения неисправностей с помощью стендовой и контрольно-измерительной аппаратуры.

· Групповое ТО служит для обслуживания нескольких СВТ, сосредоточенных в одном месте, средствами и силами специального персонала. Структура состава оборудования при групповом сервисе та же, что и при индивидуальном, но при этом предполагается наличие большего числа аппаратуры приспособлений и т.д., исключающей неоправданное дублирование. Комплект группового сервиса включает как минимум комплект оборудования индивидуального сервиса СВТ, дополненный аппаратурой и приспособлениями других СВТ.

· Централизованное ТО является более прогрессивной формой обслуживания СВТ. Система централизованного технического обслуживания представляет собой сеть региональных центров обслуживания и их филиалов – пунктов технического обслуживания.

При централизованном обслуживании сокращаются расходы на содержание технического персонала и сервисной аппаратуры. Такое обслуживание предполагает ремонт элементов, узлов и блоков СВТ на базе специальной мастерской, оснащенной всем необходимым оборудованием. Помимо этого, централизованное техническое обслуживание позволяет сосредоточить в одном месте материалы по статистике отказов элементов, узлов, блоков и устройств СВТ, а также получить эксплуатационные данные с десятки однотипных СВТ при прямом контроле достоверности.

Вид ремонта определяется условиями его проведения, составом и содержанием работ, выполняемых на СВТ.

Ремонт СВТ подразделяется на виды:

· Текущий ремонт должен проводиться для восстановления работоспособности СВТ без использования стационарных средств технологического оснащения на месте эксплуатации СВТ.

При текущем ремонте проводится контроль СВТ на функционирование с использованием соответствующих средств проверки.

· Средний ремонт должен проводиться для восстановления работоспособности СВТ, либо составных частей СВТ с использованием специализированных стационарных средств технологического оснащения. При среднем ремонте проверяется техническое состояние отдельных составных частей СВТ с устранением обнаруженных неисправностей и доведением параметров до предусмотренных норм.

· Капитальный ремонт должен проводиться для восстановления работоспособности и ресурса СВТ посредством замены или ремонта составных частей СВТ, в том числе и базовых, с использованием специализированных стационарных средств технологического оснащения в стационарных условиях.

Одной из основных характеристик СТО является длительность профилактики СВТ, которая определяется по формуле 1.1

где t Пi - суммарное время проведения профилактических мероприятий, выполняемых последовательно;

t Вj - время восстановления n неисправностей за время профилактики;

t Ф.К. - время функционального контроля.

На длительность профилактики в большей мере влияет степень квалификации обслуживающего персонала.

Анализ статических данных по эксплуатации конкретной СВТ позволяет дать рекомендации по замене профилактик меньшей периодичности на профилактики большей периодичности (например, ежедневные – на еженедельные). Это позволяет увеличить время использования СВТ непосредственно на вычислительные работы.

Другой важной количественной характеристикой является коэффициент эффективности профилактики k проф, который характеризует степень повышения безотказности СВТ за счет предотвращения отказов в момент профилактики. Коэффициент эффективности профилактики вычисляется по формуле 1.2

где n проф. - количество отказов, выявленных во время профилактики;

n общ n о + n проф. - общее число отказов СВТ за период эксплуатации.

Программный контроль СВТ основан на использовании специальных программ, контролирующих работу СВТ. Он подразделяется на:

· Программно-логический контроль основан на том, что в основную рабочую программу вводятся дополнительные операции, при выполнении которых получается избыточная информация, необходимая для обнаружения и исправления ошибок. Наличие избыточности в информации позволяет, например, находить те или иные контрольные соотношения, которые связывают получаемые в процессе расчета значения и которые можно проверять по программе в конце каждого этапа вычислений. Часто прибегают к двойному просчету, при котором избыточность информации создается путем повторения вычислений, а контрольные соотношения – это совпадение результатов первого и второго просчетов.

Программно-логический контроль не требует применения специальной аппаратуры и позволяет обнаруживать ошибки, обусловленные случайными сбоями, в процессе проведения вычислений. Однако этот вид контроля приводит к значительному увеличению времени решения задачи.

· Тестовый контроль предназначен для проверки правильности работы СВТ или ее отдельных устройств с помощью специальных программ-тестов. Контроль с помощью тестов сводится к выполнению машиной определенных действий над исходными числами и сравнению результатов с известными. В случае несовпадения ответов фиксируется ошибка.

Аппаратурные средства контроля создаются введением в состав СВТ специального дополнительного контрольного оборудования, работающего независимо от программы. Аппаратурный контроль обеспечивает проверку правильности функционирования СВТ практически без снижения ее быстродействия. Однако использование только аппаратурного контроля приводит к значительному усложнению и удорожанию СВТ. Кроме того, введение в состав СВТ большого количества избыточного сложного оборудования может привести к снижению ее общей надежности. Поэтому в современных СВТ применяется комбинированный метод контроля, представляющий собой сочетание программных и аппаратурных средств.

Комбинированный метод контроля позволяет при незначительном снижении эффективности и быстродействия СВТ существенно сократить время поиска и устранения ошибок и общий объем дополнительного оборудования СВТ, потребного для этих целей.

Эффективность системы контроля СВТ характеризуется следующими показателями:

· отношением количества оборудования, охваченного системой контроля, к общему количеству оборудования СВТ;

· вероятностью обнаружения системой контроля ошибок в работе СВТ;

· степенью детализации, с которой система контроля указывает место возникновения ошибки (точность диагноза);

· отношением количества оборудования системы контроля к общему количеству оборудования СВТ.

Эффективные системы контроля и диагностики могут быть созданы при условии, если их разработка и проектирование СВТ проводятся одновременно и взаимосвязано. Только такой подход позволяет создавать наиболее рациональный контроль с минимальными затратами на его реализацию.

Профилактическое обслуживание компьютеров может делится на:

    аварийное;

    плановое (ежемесячное, ежегодное);

    профилактическое обслуживание копировальной техники.

Аварийное техническое обслуживание проводится при выходе СВТ из строя. ТО проводится специалистом по обслуживанию средств ВТ. Оно включает в себя следующие виды работ:

    диагностика аппаратными и программными средствами компьютера или копировальной техники;

    устранение аппаратной (замена вышедшего из строя блока исправным) или программной неисправности (переустановка ОС, переустановка программ).

Ежемесячное профилактическое обслуживание включает в себя:

    удаление пыли с наружных частей ПЭВМ (при отключенном питании);

    визуальный осмотр кабелей: питания, интерфейсных кабелей монитора, клавиатуры, мыши, принтера, кабеля локальной сети;

    чистка с помощью чистящей дискеты магнитных головок накопителей на гибких дисках;

    профилактика клавиатуры, монитора, процессора и других устройств (проверка с помощью специальных тестовых программ и внешний осмотр).

В ходе выполнения ежегодных работ по профилактическому обслуживанию средств СВТ выполняются следующие действия:

    выполнение визуального осмотра компьютера;

    проверка работоспособности системы охлаждения процессора, жесткого диска, видеокарты;

    чистка монитора, клавиатуры, мышки и корпуса от пыли чистящими средствами;

    чистка дисковода и оптического привода специальными чистящими дискетами и оптическими дисками;

    дефрагментация жесткого диска;

    проверка жесткого диска на наличие вирусов антивирусными программами;

    проверка соответствия программ установленных на компьютере с программами записанными в техпаспорте.

Также периодически проводится техническое обслуживание (ТО) копировальной техники. ТО включает в себя:

    очистка принтера снаружи от пыли и отходов процесса печати;

    очистка принтера изнутри (очистка внутреннего зеркала с помощью очищающей щетки, протирание валиков спиртом);

    проверка качества печати с помощью теста.

При возникновении шума во время работы компьютера или при сильном нагревании ПК или принтера производится чистка систем охлаждения:

    очистка от пыли с помощью кисточки или кусочка ткани (снаружи и изнутри);

    удаление посторонних предметов, которые попали в вентилятор/радиатор в процессе работы;

    смазка оси вентилятора.

9. Средства диагностики и техническое обслуживание

9.1 Программные и аппаратные диагностические средства

Все методы поиска неисправностей и диагностики устройств можно разделить на две основных группы:

    аппаратный метод;

    программный метод.

К программным средствам диагностики относятся различные программы и утилиты с помощью которых можно проверить компьютера:

      MHDD 4.6 предназначена для тестирование жесткого диска на наличие логических и аппаратных ошибок;

      MemoryTest предназначена для тестирования памяти;

      Actra1.40 утилита, которая собирает всю информацию о компьютере, а также всю информацию о программном обеспечении, которое установлено на компьютере.

Аппаратный метод включает внешний осмотр, проверку правильности соединения с помощью специальных устройств – тестеров. Для проверки медного кабеля предназначен тестер SLT3 (UTP) и SLT3S (UTP/STP/FTP), показанные на рисунке 3.

Рисунок 3 - Тестеры

SLT3 (UTP) - легкие, небольших размеров тестеры, показанные на рисунке 3 а, состоят из 2-х частей (master н remote), имеют встроенные по 3 гнезда типа RJ45 для проверки соответственно 3-х способов расшивки кабеля (последовательностей) USOC, 568A, 568В Для удобства транспортировки обе части тестера соединяются друг с другом (помещаются в чехол, закреплен на поясе монтажника), при этом отключаются элементы питания, продлевая тем самим срок их службы. Тестер в состоянии обнаружить короткое замыкание, разрыв линии и несоответствие данной последовательности (жилы или пары перевернуты). Диоды LED определенным способом сигнализируют нам об этих всех ошибках.

Для измерения затухания оптических линий рекомендуется применять тестер типа FLT4, показанный на рисунке 3 б. Тестер состоит из 2-х частей: источника светового сигнала (FLT4-S) и измерителя оптической мощности приемника (FLT4-M). Источник света очень прост в обслуживании. Единственным устанавливаемым вручную параметров является длина волны излучаемого сигнала (850 нм или 1300 нм). Источник имеет выключатель, который сигнализирует нам также о необходимости замены элементов питания (один источник питания напряжением в ЭВ типа Кроне). Приемник снабжен выключателем, кнопкой установки уровня отношения (обнуление тестера при включенном «эталонном" шнуре), кнопкой выбора длины волны, а также кнопкой выбора опции измерения: затухание или оптическая мощность. Результаты измерения высвечиваются на экране LCD.

В продолжение темы:
Компьютер

Желающие обновить свою операционную систему до новой Windows 10 сталкиваются с проблемами. Если попытались зарезервировать обновление, но не получаете его или не обнаруживаете...