Спектральный и корреляционный анализ детерминированных сигналов. Корреляционные функции детерминированных сигналов. где – период дискретизации входного сигнала

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Понятие корреляция означает схожесть. Корреляционная функция сигнала является функцией и определяется выражением

где τ – временной сдвиг сигнала.

При выражение (2.65) принимает вид

где Е - энергия сигнала. Таким образом, при нулевом временном сдвиге корреляционная функция равна энергии сигнала.

Кроме корреляционной функции (2.65) существует взаимно корреляционная функция, которая характеризует взаимную связь между значениями двух сигналов и определяется выражением:

Когда U1(t) и U2(t) являются одним и тем же сигналом U(t), то взаимно корреляционная и корреляционная функция совпадают.

Корреляционная функция принимает максимальное значение только при . Взаимно корреляционная функция двух одинаковых сигналов также достигает максимума при . Для различных сигналов U1(t) и U2(t) максимальное значение функции может достигать не при . Например, взаимно корреляционная функция косинусоиды имеет максимальное значение при .

Рассмотрим корреляционные функции типовых сигналов.

Прямоугольный видеосигнал и его корреляционная функция показаны на рис. 2.24.

Корреляционная функция периодического видеосигнала с периодом Т на основании (2.66) имеет вид:

(2.67)

Корреляционная функция гармонического сигнала равна:

Сигнал и его корреляционная функция показаны на рис 2.25.

Рис. 2.25. Гармонический сигнал (а) и его корреляционная функция (б).

Взаимно корреляционная функция двух гармонических сигналов одинаковой частоты и имеет вид:

(2.69)

Если и , то взаимно корреляционная функция (2.68) равна корреляционной функции гармонического сигнала (2.69).

Взаимно корреляционная функция двух гармонических сигналов с различными частотами равна нулю. Следовательно, гармонические сигналы с различными частотами являются некоррелированными (не схожими) между собой.

3 Корреляционный анализ сигналов

Смысл спектрального анализа сигналов заключается в изучении того, как сигнал может быть представлен в виде суммы (или интеграла) простых гармонических колебаний и как форма сигнала определяет структуру распределения по частотам амплитуд и фаз этих колебаний. В противоположность этому задачей корреляционного анализа сигналов является определение меры степени сходства и различия сигналов или сдвинутых по времени копий одного сигнала. Введение меры открывает пути к проведению количественных измерений степени схожести сигналов. Будет показано, что существует определенная взаимосвязь между спектральными и корреляционными характеристиками сигналов.

3.1 Автокорреляционная функция (АКФ)

Автокорреляционная функция сигнала с конечной энергией – это значение интеграла от произведения двух копий этого сигнала, сдвинутых относительно друг друга на время τ, рассматриваемое в функции этого временного сдвига τ:

Если сигнал определен на конечном интервале времени , то его АКФ находится как:

,

где - интервал перекрытия сдвинутых копий сигнала.

Считается, что чем больше значение автокорреляционной функции при данном значении , тем в большей степени две копии сигнала, сдвинутые на промежуток времени , похожи друг на друга. Поэтому корреляционная функция и является мерой сходства для сдвинутых копий сигнала.

Вводимая таким образом мера сходства для сигналов, имеющих форму случайных колебаний вокруг нулевого значения, обладает следующими характерными свойствами.

Если сдвинутые копии сигнала колеблются примерно в такт друг к другу, то это является признаком их схожести и АКФ принимает большие положительные значения (большая положительная корреляция). Если копии колеблются почти в противофазе, АКФ принимает большие отрицательные значения (антисходство копий сигнала, большая отрицательная корреляция).

Максимум АКФ достигается при совпадении копий, то есть при отсутствии сдвига. Нулевые значения АКФ достигаются при сдвигах, при которых не заметно ни сходства, ни антисходства копий сигнала (нулевая корреляция,



отсутствие корреляции).

На рис.3.1 изображен фрагмент реализации некоторого сигнала на интервале времени от 0 до 1 с. Сигнал случайным образом колеблется вокруг нулевого значения. Поскольку интервал существования сигнала конечен, то конечна и его энергия. Его АКФ можно вычислить в соответствии с уравнением:

.

Автокорреляционная функция сигнала, вычисленная в MathCad в соответствии с этим уравнением, представлена на рис. 3.2. Корреляционная функция показывает не только то, что сигнал похож сам на себя (сдвиг τ=0), но и то, что некоторой схожестью обладают и копии сигнала, сдвинутые друг относительно друга приблизительно на 0.063 с (боковой максимум автокорреляционной функции). В противоположность этому копии сигнала сдвинутые на 0.032 с, должны быть антипохожи дуг на друга, то есть быть в некотором смысле противоположными друг другу.

На рис.33 показаны пары этих двух копий. По рисунку можно проследить, что понимается под похожестью и антипохожестью копий сигнала.

Корреляционная функция обладает следующими свойствами:

1. При τ = 0 автокорреляционная функция принимает наибольшее значение, равное энергии сигнала

2. Автокорреляционная функция является четной функцией временного сдвига .

3. С ростом τ автокорреляционная функция убывает до нуля

4. Если сигнал не содержит разрывов типа δ - функций, то - непрерывная функция.



5. Если сигнал является электрическим напряжением, то корреляционная функция имеет размерность .

Для периодических сигналов в определении автокорреляционной функции тот же самый интеграл делят еще на период повторения сигнала:

.

Так введенная корреляционная функция отличается следующими свойствами:

Значение корреляционной функции в нуле равно мощности сигнала ,

Размерность корреляционной функции равна квадрату размерности сигнала, например .

Для примера вычислим корреляционную функцию гармонического колебания :

Используя ряд тригонометрических преобразований, получим окончательно:

Таким образом, автокорреляционная функция гармонического колебания является косинусоидой с тем же периодом изменения, что и сам сигнал. При сдвигах, кратных периоду колебания, гармоника преобразуется в себя и АКФ принимает наибольшие значения, равные половине квадрата амплитуды. Сдвиги по времени, кратные половине периода колебания, равносильны смещению фазы на угол , при этом меняется знак колебаний, а АКФ принимает минимальное значение, отрицательное и равное половине квадрата амплитуды. Сдвиги, кратные четверти периода, переводят, например, синусоидальное колебание в косинусоидальное и наоборот. При этом АКФ обращается в нуль. Такие сигналы, находящиеся в квадратуре друг относительно друга, с точки зрения автокорреляционной функции оказываются совершенно не похожими друг на друга.

Важным является то, что в выражение для корреляционной функции сигнала не вошла его начальная фаза. Информация о фазе потерялась. Это означает, что по корреляционной функции сигнала нельзя восстановить сам сигнал. Отображение в противоположность отображению не является взаимно однозначным.

Если под механизмом генерирования сигналов понимать некоего демиурга, создающего сигнал по выбранной им корреляционной функции, то он смог бы создать целую совокупность сигналов (ансамбль сигналов), имеющих действительно одну и ту же корреляционную функцию, но отличающихся друг от друга фазовыми соотношениями.

Актом проявления сигналом своей свободной воли, независимой от воли создателя (возникновение отдельных реализаций некоторого случайного процесса),

Результатом постороннего насилия над сигналом (введение в сигнал измерительной информации, получаемой при проведении измерений какой либо физической величины).

Аналогичным образом обстоит дело с любым периодическим сигналом. Если периодический сигнал с основным периодом Т имеет амплитудный спектр и фазовый спектр , то корреляционная функция сигнала принимает следующий вид:

.

Уже в этих примерах проявляется некоторая связь между корреляционной функцией и спектральными свойствами сигнала. Подробнее об этих соотношениях речь пойдет в дальнейшем.

3.2 Взаимнокорреляционная функция (ВКФ).

В отличие от автокорреляционной функции взаимнокорреляционная функция определяет степень схожести копий двух различных сигналов x(t) и y(t), сдвинутых на время τ друг относительно друга:

Взаимнокорреляционная функция обладает следующими свойствами:

1. При τ = 0 взаимнокорреляционная функция принимает значение, равное взаимной энергии сигналов, то есть энергии их взаимодействия

.

2. При любом τ имеет место соотношение:

,

где - энергии сигналов.

3. Изменение знака временного сдвига равносильно взаимной перестановке сигналов:

.

4. С ростом τ взаимнокорреляционная функция хотя и не монотонно, но убывает до нуля

5. Значение взаимнокорреляционной функции в нуле ничем не выделяется среди других значений.

Для периодических сигналов понятие взаимнокорреляционной функции, как правило, вообще не используется.

Приборы для измерения значений автокорреляционной и взаимнокорреляционной функций называются коррелометрами или корреляторами. Коррелометры применяются, например, для решения следующих информационно-измерительных задач:

Статистический анализ электроэнцефалограмм и других результатов регистрации биопотенциалов,

Определение пространственных координат источника сигнала по величине временного сдвига, при котором достигается максимум ВКФ,

Выделение слабого сигнала на фоне сильных статических несвязанных помех,

Обнаружение и локализация каналов утечки информации путем определения корреляции между сигналами радиоэфира в помещении и за его пределами,

Автоматизированное обнаружение в ближней зоне, распознавание и поиск работающих радиоизлучающих подслушивающих устройств, включая мобильные телефоны, используемые как подслушивающие устройства,

Локализация мест утечек в трубопроводах на основании определения ВКФ двух сигналов акустического шума, вызываемого утечкой, в двух точках измерения, в которых расположены датчики на трубе.

3.3 Соотношения между корреляционными и спектральными функциями.

Как корреляционные, так и спектральные функции описывают внутреннюю структуру сигналов, их внутреннее строение. Поэтому можно ожидать, что между этими двумя способами описания сигналов существует некоторая взаимозависимость. Наличие такой связи Вы уже видели на примере периодических сигналов.

Взаимная корреляционная функция, как и любая другая функция времени, может быть подвергнута преобразованию Фурье:

Изменим порядок интегрирования:

Выражение в квадратных скобках можно было бы рассматривать как преобразование Фурье для сигнала y(t), но в показателе экспоненты не стоит знак минус. Это говорит о том, что внутренний интеграл дает нам выражение , комплексно сопряженное со спектральной функцией .

Но выражение не зависит от времени, поэтому его можно вынести за знак внешнего интеграла. Тогда внешний интеграл просто даст нам определение спектральной функции сигнала x(t). Окончательно имеем:

Это означает, что преобразование Фурье для взаимной корреляционной функции двух сигналов равно произведению их спектральных функций, одна из которых подвергнута комплексному сопряжению. Это произведение называется взаимным спектром сигналов:

Из полученного выражения следует важный вывод: если спектры сигналов x(t) и y(t) не перекрывают друг друга, то есть располагаются в различных диапазонах частот, то такие сигналы являются некоррелированными, независимыми друг от друга.

Если положить в приведенных формулах: x(t) = y(t), то получим выражение для преобразования Фурье автокорреляционной функции

Это означает, что автокорреляционная функция сигнала и квадрат модуля его спектральной функции связаны друг с другом посредством преобразования Фурье.

Функция называется энергетическим спектром сигнала . Энергетический спектр показывает, как общая энергия сигнала распределяется по частотам его отдельных гармонических составляющих.

3.4 Энергетические характеристики сигналов с частотной области

Взаимная корреляционная функция двух сигналов связана преобразованием Фурье с взаимным спектром сигналов, поэтому ее можно выразить в виде обратного преобразования Фурье от взаимного спектра:

.

Теперь подставим в эту цепочку равенств значение временного сдвига . В результате получим соотношение, которое определяет смысл равенства Релея :

,

то есть интеграл от произведения двух сигналов равен интегралу от произведения спектров этих сигналов, один из которых подвергнут операции комплексного сопряжения.

.

Это соотношение называется равенством Парсеваля .

Периодические сигналы обладают бесконечной энергией, но конечной мощностью. При их рассмотрении мы уже сталкивались с возможностью вычисления мощности периодического сигнала через сумму квадратов модулей коэффициентов его комплексного спектра:

.

Это соотношение обладает полной аналогией с равенством Парсеваля.

Функции корреляции сигналов применяются для интегральных количественных оценок формы сигналов и степени их сходства друг с другом.

Автокорреляционные функции (АКФ) сигналов (correlation function, CF). Применительно к детерминированным сигналам с конечной энергией АКФ является количественной интегральной характеристикой формы сигнала, и представляет собой интеграл от произведения двух копий сигнала s(t), сдвинутых относительно друг друга на время t:

B s (t) = s(t) s(t+t) dt. (2.4.1)

Как следует из этого выражения, АКФ является скалярным произведением сигнала и его копии в функциональной зависимости от переменной величины значения сдвига t. Соответственно, АКФ имеет физическую размерность энергии, а при t = 0 значение АКФ непосредственно равно энергии сигнала и является максимально возможным (косинус угла взаимодействия сигнала с самим собой равен 1):

B s (0) = s(t) 2 dt = E s .

Функция АКФ является непрерывной и четной. В последнем нетрудно убедиться заменой переменной t = t-t в выражении (2.4.1):

B s (t) = s(t) s(t-t) dt = s(t-t) s(t) dt = B s (-t).

С учетом четности, графическое представление АКФ обычно производится только для положительных значений t. Знак +t в выражении (2.4.1) означает, что при увеличении значений t от нуля копия сигнала s(t+t) сдвигается влево по оси t. На практике сигналы обычно также задаются на интервале положительных значений аргументов от 0-Т, что дает возможность продления интервала нулевыми значениями, если это необходимо для математических операций. В этих границах вычислений более удобным является сдвиг копии сигнала влево по оси аргументов, т.е. применение в выражении (2.4.1) функции s(t-t):

B s (t) = s(t) s(t-t) dt. (2.4.1")

По мере увеличения значения величины сдвига t для финитных сигналов временное перекрытие сигнала с его копией уменьшается, а, соответственно, косинус угла взаимодействия и скалярное произведение в целом стремятся к нулю:

Пример. На интервале (0,Т) задан прямоугольный импульс с амплитудным значением, равным А. Вычислить автокорреляционную функцию импульса.

При сдвиге копии импульса по оси t вправо, при 0≤t≤T сигналы перекрываются на интервале от t до Т. Скалярное произведение:

B s (t) = A 2 dt = A 2 (T-t).

При сдвиге копии импульса влево, при -T≤t<0 сигналы перекрываются на интервале от 0 до Т-t. Скалярное произведение:

B s (t) = A 2 dt = A 2 (T+t).

При |t| > T сигнал и его копия не имеют точек пересечения и скалярное произведение сигналов равно нулю (сигнал и его сдвинутая копия становятся ортогональными).

Обобщая вычисления, можем записать:

B s (t) = .

В случае периодических сигналов АКФ вычисляется по одному периоду Т, с усреднением скалярного произведения и его сдвинутой копии в пределах этого периода:

B s (t) = (1/Т) s(t) s(t-t) dt.

При t=0 значение АКФ в этом случае равно не энергии, а средней мощности сигналов в пределах интервала Т. АКФ периодических сигналов при этом также является периодической функцией с тем же периодом Т. Так, для сигнала s(t) = A cos(w 0 t+j 0) при T=2p/w 0 имеем:

B s (t) = A cos(w 0 t+j 0) A cos(w 0 (t-t)+j 0) = (A 2 /2) cos(w 0 t).

Отметим, что полученный результат не зависит от начальной фазы гармонического сигнала, что характерно для любых периодических сигналов и является одним из свойств КФ.

Для сигналов, заданных на определенном интервале , вычисление АКФ также производится с нормировкой на длину интервала :

B s (t) = s(t) s(t+t) dt. (2.4.2)

В пределе, для непериодических сигналов с измерением АКФ на интервале Т:

B s (t) = . (2.4.2")

Автокорреляция сигнала может оцениваться и коэффициентом автокорреляции, вычисление которого производится по формуле (по центрированным сигналам):

r s (t) = cos j(t) = ás(t), s(t+t)ñ /||s(t)|| 2 .

Взаимная корреляционная функция (ВКФ) сигналов (cross-correlation function, CCF) показывает степень сходства сдвинутых экземпляров двух разных сигналов и их взаимное расположение по координате (независимой переменной), для чего используется та же формула (2.4.1), что и для АКФ, но под интегралом стоит произведение двух разных сигналов, один из которых сдвинут на время t:

B 12 (t) = s 1 (t) s 2 (t+t) dt. (2.4.3)

При замене переменной t = t-t в формуле (2.4.3), получаем:

B 12 (t) = s 1 (t-t) s 2 (t) dt = s 2 (t) s 1 (t-t) dt = B 21 (-t)

Отсюда следует, что для ВКФ не выполняется условие четности, а значения ВКФ не обязаны иметь максимум при t = 0. Это можно наглядно видеть на рис. 2.4.1, где заданы два одинаковых сигнала с центрами на точках 0.5 и 1.5. Вычисление по формуле (2.4.3) с постепенным увеличением значений t означает последовательные сдвиги сигнала s2(t) влево по оси времени (для каждого значения s1(t) для подынтегрального умножения берутся значения s2(t+t)).

Signals and linear systems. Correlation of signals

Тема 6. Корреляция сигналов

Предельный страх и предельный пыл храбрости одинаково расстраивают желудок и вызывают понос.

Мишель Монтень. Французский юрист-мыслитель, XVI в.

Вот это номер! Две функции имеют стопроцентную корреляцию с третьей и ортогональны друг другу. Ну и шуточки были у Всевышнего при сотворении Мира.

Анатолий Пышминцев. Новосибирский геофизик Уральской школы, ХХ в.

1. Автокорреляционные функции сигналов. Понятие автокорреляционных функций (АКФ). АКФ сигналов, ограниченных во времени. АКФ периодических сигналов. Функции автоковариации (ФАК). АКФ дискретных сигналов. АКФ зашумленных сигналов. АКФ кодовых сигналов.

2. Взаимнокорреляционные функции сигналов (ВКФ). Взаимная корреляционная функция (ВКФ). Взаимная корреляция зашумленных сигналов. ВКФ дискретных сигналов.Оценка периодических сигналов в шуме. Функция взаимных корреляционных коэффициентов.

3. Спектральные плотности корреляционных функций. Спектральная плотность АКФ. Интервал корреляции сигнала. Спектральная плотность ВКФ. Вычисление корреляционных функций при помощи БПФ.

Введение

Корреляция (correlation), и ее частный случай для центрированных сигналов – ковариация, является методом анализа сигналов. Приведем один из вариантов использования метода. Допустим, что имеется сигнал s(t), в котором может быть (а может и не быть) некоторая последовательность x(t) конечной длины Т, временное положение которой нас интересует. Для поиска этой последовательности в скользящем по сигналу s(t) временном окне длиной Т вычисляются скалярные произведения сигналов s(t) и x(t). Тем самым мы "прикладываем" искомый сигнал x(t) к сигналу s(t), скользя по его аргументу, и по величине скалярного произведения оцениваем степень сходства сигналов в точках сравнения.

Корреляционный анализ дает возможность установить в сигналах (или в рядах цифровых данных сигналов) наличие определенной связи изменения значений сигналов по независимой переменной, то есть, когда большие значения одного сигнала (относительно средних значений сигнала) связаны с большими значениями другого сигнала (положительная корреляция), или, наоборот, малые значения одного сигнала связаны с большими значениями другого (отрицательная корреляция), или данные двух сигналов никак не связаны (нулевая корреляция).

В функциональном пространстве сигналов эта степень связи может выражаться в нормированных единицах коэффициента корреляции, т.е. в косинусе угла между векторами сигналов, и, соответственно, будет принимать значения от 1 (полное совпадение сигналов) до -1 (полная противоположность) и не зависит от значения (масштаба) единиц измерений.

В варианте автокорреляции (autocorrelation) по аналогичной методике производится определение скалярного произведения сигнала s(t) с собственной копией, скользящей по аргументу. Автокорреляция позволяет оценить среднестатистическую зависимость текущих отсчетов сигнала от своих предыдущих и последующих значений (так называемый радиус корреляции значений сигнала), а также выявить в сигнале наличие периодически повторяющихся элементов.

Особое значение методы корреляции имеют при анализе случайных процессов для выявления неслучайных составляющих и оценки неслучайных параметров этих процессов.

Заметим, что в терминах "корреляция" и "ковариация" существует некоторая путаница. В математической литературе термин "ковариация" применяется к центрированным функциям, а "корреляция" – к произвольным. В технической литературе, и особенно в литературе по сигналам и методам их обработки, часто применяется прямо противоположная терминология. Принципиального значения это не имеет, но при знакомстве с литературными источниками стоит обращать внимание на принятое назначение данных терминов.

В продолжение темы:
Asus

Чтобы строки маркированного списка как-то выделить от основного текста, можно сделать так, чтобы цвет маркеров в списке отличался от цвета текста.По умолчанию стоит черная...

Новые статьи
/
Популярные