Лекция: Подходы к определению количества информации. Формулы Хартли и Шеннона. Вероятностный подход к определению количества информации "Формула Шеннона. Применение ЭТ Excel для решения задач на нахождение количества информации" Определение с помощью собс

Существует множество ситуаций, когда возможные события имеют различные вероятности реализации. Например, если монета несимметрична (одна сторона тяжелее другой), то при ее бросании вероятности выпадения «орла» и «решки» будут различаться.

Формулу для вычисления количества информации для событий с различными вероятностями предложил К. Шеннон в 1948 г. В этом случае количество информации определяется по формуле:

где I - количество информации;

N - количество возможных событий;

Pi - вероятности отдельных событий.

Для частного, но широко распространенного и рассмотренного выше случая, когда события равновероятны (р; = 1 / N), величину количества информации I можно рассчитать по формуле:

Задание «Бросание пирамидки». Определить количество информации, которое мы получаем в результате бросания несимметричной и симметричной пирамидок.

При бросании несимметричной четырехгранной пирамидки вероятности отдельных событий равны:

Количество информации, которое мы получим после бросания несимметричной пирамидки, можно рассчитать по формуле (2.3):

При бросании симметричной четырехгранной пирамидки вероятности отдельных событий равны между собой:

Количество информации, которое мы получим после бросания симметричной пирамидки, можно рассчитать по формуле (2.4):

Таким образом, при бросании симметричной пирамидки, когда события равновероятны, мы получим большее количество информации (2 бита), чем при бросании несимметричной пирамидки, когда события неравновероятны (1,75 бита).

Количество информации, которое мы получаем, достигает максимального значения, если события равновероятны.

В теории информации доказано, что максимальное количество информации несет сообщение, в котором вероятности появления всех знаков одинаковы.

Количество информации, которое несет знак, зависит от вероятности его получения. Если получатель заранее точно знает, какой знак придет, то полученное количество информации будет равно 0. Наоборот, чем менее вероятно получение знака, тем больше его информационная емкость.

В русской письменной речи частота использования букв в тексте различна, так, в среднем на 1000 знаков осмысленного текста приходится 200 букв «а» и в сто раз меньшее количество буквы «ф» (всего 2). Таким образом, с точки зрения теории информации информационная емкость знаков русского алфавита различна (у буквы «а» она наименьшая, а у буквы «ф» - наибольшая).

Проведем воображаемый эксперимент: пусть обезьяна передает бессмысленный текст, случайно нажимая клавиши клавиатуры компьютера (в этом случае вероятности появления знаков одинаковы), а человек передает имеющее смысл сообщение такой же длины (в этом случае вероятности появления знаков различны).

Из теории информации следует парадоксальный вывод о том, что сообщение, передаваемое обезьяной, содержит большее количество информации, чем сообщение, передаваемое человеком.

Выбор правильной стратегии в игре «Угадай число». На получении максимального количества информации строится выбор правильной стратегии в игре «Угадай число», в которой первый участник загадывает целое число (например, 3) из заданного интервала (например, от 1 до 16), а второй должен «угадать» задуманное число.

Если рассмотреть эту игру с информационной точки зрения, то начальная неопределенность знаний для второго участника составляет 16 возможных событий (вариантов загаданных чисел).

При правильной стратегии интервал чисел всегда должен делиться пополам, тогда количество возможных событий (чисел) в каждом из полученных интервалов будет одинаково и их отгадывание равновероятно. В этом случае на каждом шаге ответ первого игрока («да» или «нет») будет нести максимальное количество информации (1 бит).

Как видно из табл. 2.4, угадывание числа 3 произошло за четыре шага, на каждом из которых неопределенность знаний второго участника уменьшалась в два раза за счет получения сообщений от первого участника, содержащих 1 бит информации. Таким образом, количество информации, необходимое для отгадывания одного из 16 чисел, составило 4 бита.

Таблица 2.4

Информационная модель игры «Угадай число»

Практическое задание «Определение количества информации».

В непрозрачном мешочке хранятся 10 белых, 20 красных, 30 синих и 40 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика?

Так как количество шариков различных цветов неодинаково, то вероятности зрительных сообщений о цвете вынутого из мешочка шарика также различаются и равны количеству шариков данного цвета, деленному на общее количество шариков:

События неравновероятны, поэтому для определения количества информации, содержащемся в сообщении о цвете шарика, воспользуемся формулой (2.3):

Для вычисления этого выражения, содержащего логарифмы, воспользуемся компьютерным калькулятором.

Контрольные вопросы

1. В каком случае количество информации, полученное о событии, достигает максимального значения?

Задания для самостоятельного выполнения

  • 2.12. Какое количество вопросов достаточно задать вашему собеседнику, чтобы наверняка определить:
    • ? день недели, в котором он родился?
    • ? месяц, в котором он родился?
    • ? число, в которое он родился?

Практикум к главе 2

Практическая работа 2.1. Перевод единиц измерения количества информации с помощью калькулятора

Практическая работа 2.2. Определение количества информации по формуле Шеннона с помощью калькулятора

Понятие Энтропи́и впервые введено в 1865 Р. Клаузиусом в термодинамике для определения меры необратимого рассеяния энергии. Энтропия применяется в разных отраслях науки, в том числе и в теории информации как мера неопределенности какого-либо опыта, испытания, который может иметь разные исходы. Эти определения энтропии имеют глубокую внутреннюю связь. Так на основе представлений об информации можно вывести все важнейшие положения статистической физики. [БЭС. Физика. М: Большая российская энциклопедия, 1998].

Информационная двоичная энтропия для независимых (неравновероятных) случайных событий x с n возможными состояниями (от 1 до n , p - функция вероятности) рассчитывается по формуле Шеннона :

Эта величина также называется средней энтропией сообщения. Энтропия в формуле Шеннона является средней характеристикой – математическим ожиданием распределения случайной величины .
Например, в последовательности букв, составляющих какое-либо предложение на русском языке, разные буквы появляются с разной частотой, поэтому неопределённость появления для некоторых букв меньше, чем для других.
В 1948 году, исследуя проблему рациональной передачи информации через зашумлённый коммуникационный канал, Клод Шеннон предложил революционный вероятностный подход к пониманию коммуникаций и создал первую, истинно математическую, теорию энтропии. Его сенсационные идеи быстро послужили основой разработки теории информации, которая использует понятие вероятности. Понятие энтропии, как меры случайности, введено Шенноном в его статье «A Mathematical Theory of Communication», опубликованной в двух частях в Bell System Technical Journal в 1948 году.

В случае равновероятных событий (частный случай), когда все варианты равновероятны, остается зависимость только от количества рассматриваемых вариантов и формула Шеннона значительно упрощается и совпадает с формулой Хартли, которая впервые была предложена американским инженером Ральфом Хартли в 1928 году, как один из научных подходов к оценке сообщений:

, где I – количество передаваемой информации, p – вероятность события, N – возможное количество различных (равновероятных) сообщений.

Задание 1. На равновероятные события.
В колоде 36 карт. Какое количество информации содержится в сообщении, что из колоды взята карта с портретом “туз”; “туз пик”?

Вероятность p1 = 4/36 = 1/9, а p2 = 1/36. Используя формулу Хартли имеем:

Ответ: 3.17; 5.17 бит
Заметим (из второго результата), что для кодирования всех карт, необходимо 6 бит.
Из результатов также ясно, что чем меньше вероятность события, тем больше информации оно содержит. (Данное свойство называется монотонностью )

Задание 2. На неравновероятные события
В колоде 36 карт. Из них 12 карт с “портретами”. Поочередно из колоды достается и показывается одна из карт для определения изображен ли на ней портрет. Карта возвращается в колоду. Определить количество информации, передаваемой каждый раз, при показе одной карты.

Наиболее широкое распространение при определении среднего количества информации, которое содержится в сообщениях от источников самой разной природы, получил подход. К Шеннона. Рассмотрим следующую ситуацию.
Источник передает элементарные сигналы k различных типов. Проследим за достаточно длинным отрезком сообщения. Пусть в нем имеется N 1 сигналов первого типа, N 2 сигналов второго типа, ..., N k сигналов k -го типа, причем N 1 + N 2 + ... + N k = N – общее число сигналов в наблюдаемом отрезке, f 1, f 2, ..., f k – частоты соответствующих сигналов. При возрастании длины отрезка сообщения каждая из частот стремится к фиксированному пределу, т.е.
lim f i = p i , (i = 1, 2, ..., k ),
где р i можно считать вероятностью сигнала. Предположим, получен сигнал i -го типа с вероятностью р i , содержащий – log p i единиц информации. В рассматриваемом отрезке i -й сигнал встретится примерно Np i раз (будем считать, что N достаточно велико), и общая информация, доставленная сигналами этого типа, будет равна произведению Np i log р i . То же относится к сигналам любого другого типа, поэтому полное количество информации, доставленное отрезком из N сигналов, будет примерно равно

Чтобы определить среднее количество информации, приходящееся на один сигнал, т.е. удельную информативность источника, нужно это число разделить на N . При неограниченном росте приблизительное равенство перейдет в точное. В результате будет получено асимптотическое соотношение – формула Шеннона

В последнее время она стала не менее распространенной, чем знаменитая формула Эйнштейна Е = mc 2 . Оказалось, что формула, предложенная Хартли, представляет собой частный случай более общей формулы Шеннона. Если в формуле Шеннона принять, что
р 1 = p 2 = ... = р i = ... =p N = 1/N , то

Знак минус в формуле Шеннона не означает, что количество информации в сообщении – отрицательная величина. Объясняется это тем, что вероятность р , согласно определению, меньше единицы, но больше нуля. Так как логарифм числа, меньшего единицы, т.е. log p i – величина отрицательная, то произведение вероятности на логарифм числа будет положительным.
Кроме этой формулы, Шенноном была предложена абстрактная схема связи, состоящая из пяти элементов (источника информации, передатчика, линии связи, приемника и адресата), и сформулированы теоремы о пропускной способности, помехоустойчивости, кодировании и т.д.
В результате развития теории информации и ее приложений идеи Шеннона быстро распространяли свое влияние на самые различные области знаний. Было замечено, что формула Шеннона очень похожа на используемую в физике формулу энтропии, выведенную Больцманом. Энтропия обозначает степень неупорядоченности статистических форм движения молекул. Энтропия максимальна при равновероятном распределении параметров движения молекул (направлении, скорости и пространственном положении). Значение энтропии уменьшается, если движение молекул упорядочить. По мере увеличения упорядоченности движения энтропия стремится к нулю (например, когда возможно только одно значение и направление скорости). При составлении какого-либо сообщения (текста) с помощью энтропии можно характеризовать степень неупорядоченности движения (чередования) символов. Текст с максимальной энтропией – это текст с равновероятным распределением всех букв алфавита, т.е. с бессмысленным чередованием букв, например: ЙХЗЦЗЦЩУЩУШК ШГЕНЕЭФЖЫЫДВЛВЛОАРАПАЯЕЯЮЧБ СБСЬМ. Если при составлении текста учтена реальная вероятность букв, то в получаемых таким образом «фразах» будет наблюдаться определенная упорядоченность движения букв, регламентируемая частотой их появления: ЕЫТ ЦИЯЬА ОКРВ ОДНТ ЬЧЕ МЛОЦК ЗЬЯ ЕНВ ТША.
При учете вероятностей четырехбуквенных сочетаний текст становится настолько упорядоченным, что по некоторым формальным признакам приближается к осмысленному: ВЕСЕЛ ВРАТЬСЯ НЕ СУХОМ И НЕПО И КОРКО. Причиной такой упорядоченности в данном случае является информация о статистических закономерностях текстов. В осмысленных текстах упорядоченность, естественно, еще выше. Так, в фразе ПРИШЛ... ВЕСНА мы имеем еще больше информации о движении (чередовании) букв. Таким образом, от текста к тексту увеличиваются упорядоченность и информация, которой мы располагаем о тексте, а энтропия (мера неупорядоченности) уменьшается.
Используя различие формул количества информации Шеннона и энтропии Больцмана (разные знаки), Л. Бриллюэн охарактеризовал информацию как отрицательную энтропию, или негэнтропию . Так как энтропия является мерой неупорядоченности, то информация может быть определена как мера упорядоченности материальных систем .
В связи с тем, что внешний вид формул совпадает, можно предположить, что понятие информация ничего не добавляет к понятию энтропии. Однако это не так. Если понятие энтропии применялось ранее только для систем, стремящихся к термодинамическому равновесию, т.е. к максимальному беспорядку в движении ее составляющих, к увеличению энтропии, то понятие информации обратило внимание и на те системы, которые не увеличивают энтропию, а наоборот, находясь в состоянии с небольшими значениями энтропии, стремятся к ее дальнейшему уменьшению.

Трудно переоценить значение идей теории информации в развитии самых разнообразных научных областей.
Однако, по мнению К. Шеннона, все нерешенные проблемы не могут быть решены при помощи таких магических слов, как «информация», «энтропия», «избыточность».
Теория информации основана на вероятностных, статистических закономерностях явлений. Она дает полезный, но не универсальный аппарат. Поэтому множество ситуаций не укладываются в информационную модель Шеннона. Не всегда представляется возможным заранее установить перечень всех состояний системы и вычислить их вероятности. Кроме того, в теории информации рассматривается только формальная сторона сообщения, в то время как смысл его остается в стороне. Например, система радиолокационных станций ведет наблюдение за воздушным пространством с целью обнаружения самолета противника Система S , за которой ведется наблюдение, может быть в одном из двух состояний x 1 – противник есть, x 2 – противника нет. Важность первого сообщения нельзя оценить с помощью вероятностного подхода. Этот подход и основанная на нем мера количества информации выражают, прежде всего, «структурно-синтаксическую» сторону ее передачи, т.е. выражают отношения сигналов. Однако понятия «вероятность», «неопределенность», с которыми связано понятие информации, предполагают процесс выбора. Этот процесс может быть осуществлен только при наличии множества возможностей. Без этого условия, как можно предположить, передача информации невозможна.

Разделы: Информатика

Материал разработан на 2 спаренных урока.

Цели уроков: Сформировать у учащихся понимание вероятности, равновероятных событий и событий с различными вероятностями. Научить находить количество информации, используя вероятностный подход. Создать в Excel информационную модель для автоматизации процесса вычислений в задачах на нахождение количества информации, используя формулу Шеннона.

Требования к знаниям и умениям:

Учащиеся должны знать:

  • какие события являются равновероятными, какие неравновероятными;
  • как найти вероятность события;
  • как найти количество информации в сообщении, что произошло одно из неравновероятных событий;
  • как найти количество информации в сообщении, когда возможные события имеют различные вероятности реализации.

Учащиеся должны уметь:

  • различать равновероятные и неравновероятные события;
  • находить количество информации в сообщении, что произошло одно из равновероятных событий или одно из не равновероятных событий;
  • создать информационную модель для автоматизации процесса решения задач на нахождение количества информации с помощью прикладных программ.

Оборудование: доска, компьютер, мультимедийный проектор, карточки с заданиями, карточки-памятки, справочный материал.

Урок 1. Вероятностный подход к определению количества информации. Формула Шеннона

Ход урока

I. Организационный момент.

II. Проверка домашнего задания.

III. Постановка цели урока.

Задача: Какое сообщение содержит большее количество информации?

  • Отв.: 3 бит.)
  • Вася получил за экзамен оценку 4 (по 5-бальной системе единицы не ставят). (Отв.: 2 бит.)
  • Отв.: 1 бит.)
  • Бабушка испекла 8 пирожков с капустой, 16 пирожков с повидлом. Маша съела один пирожок.

Первые три варианта учащиеся решают без затруднения. События равновероятны, поэтому можно применить для решения формулу Хартли. Но третье задание вызывает затруднение. Делаются различные предположения. Роль учителя: подвести учащихся к осмыслению, что в четвертом варианте мы сталкиваемся с ситуацией, когда события неравновероятны. Не все ситуации имеют одинаковые вероятности реализации. Существует много таких ситуаций, у которых вероятности реализации различаются. Например, если бросают несимметричную монету или "правило бутерброда".

Сегодня на уроке мы должны ответить на вопрос: как вычислить количество информации в сообщении о неравновероятном событии.

IV. Объяснение нового материала.

Для вычисления количества информации в сообщении о неравновероятном событии используют следующую формулу: I= log 2 (1/ p)

где I – это количество информации, р – вероятность события.

Вероятность события выражается в долях единицы и вычисляется по формуле: р= K/ N,

где К – величина, показывающая сколько раз произошло интересующее нас событие, N – общее число возможных исходов какого-то процесса.

Вернемся к нашей задаче.

Пусть К 1 – это количество пирожков с повидлом, К 1 =24

К 2 – количество пирожков с капустой, К 2 =8

N – общее количество пирожков, N = К 1 +К 2 =24+8=32

Вычислим вероятность выбора пирожка с разной начинкой и количество информации, которое при этом было получено.

Вероятность выбора пирожка с повидлом: р 1 =24/32=3/4=0,75.

Вероятность выбора пирожка с капустой: р 2 =8/32=1/4=0,25.

Обращаем внимание учащихся на то, что в сумме все вероятности дают 1.

Вычислим количество информации, содержащееся в сообщении, что Маша выбрала пирожок с повидлом: I 1 = log 2 (1/ p 1)= log 2 (1/0,75)= log 2 1,3=1,15470 бит.

Вычислим количество информации, содержащееся в сообщении, если был выбран пирожок с капустой: I 2 = log 2 (1/ p 2)= log 2 (1/0,25)= log 2 4=2 бит.

Пояснение: если учащиеся не умеют вычислять значение логарифмической функции, то можно использовать при решении задач этого урока следующие приемы:

  • Ответы давать примерные, задавая ученикам следующий вопрос: «В какую степень необходимо возвести число 2, чтобы получилось число, стоящее под знаком логарифма?».
  • Применить таблицу из задачника-практикума под редакцией Семакина И.Г. и др.

Приложение 1. «Количество информации в сообщении об одном из N равновероятных событий: I= log 2 N». (Приложение вы можете получить у автора статьи. )

При сравнении результатов вычислений получается следующая ситуация: вероятность выбора пирожка с повидлом больше, чем с капустой, а информации при этом получилось меньше. Это не случайность, а закономерность.

Качественную связь между вероятностью события и количеством информации в сообщении об этом событии можно выразить так: чем меньше вероятность некоторого события, тем больше информации содержит сообщение об этом событии.

Вернемся к нашей задаче с пирожками. Мы еще не ответили на вопрос: сколько получим информации при выборе пирожка любого вида?

Ответить на этот вопрос нам поможет формула вычисления количества информации для событий с различными вероятностями, которую предложил в 1948 г. американский инженер и математик К.Шеннон.

Если I -количество информации, N -количество возможных событий, р i - вероятности отдельных событий, где i принимает значения от 1 до N, то количество информации для событий с различными вероятностями можно определить по формуле:

можно расписать формулу в таком виде:

Рассмотрим формулу на нашем примере:

I = - (р 1 ∙log 2 p 1 + р 2 ∙log 2 p 2)= - (0,25∙ log 2 0,25+0,75∙ log 2 0,75)≈-(0,25∙(-2)+0,75∙(-0,42))=0,815 бит

Теперь мы с вами можем ответить на вопрос задачи, которая была поставлена в начале урока. Какое сообщение содержит большее количество информации?

  1. В библиотеке 8 шкафов. Книга нашлась в 3-м шкафу; (Отв.: 3 бит.)
  2. Вася получил за экзамен 3 балла (по 5-бальной системе единицы не ставят). (Отв.: 2 бит.)
  3. Бабушка испекла 12 пирожков с капустой, 12 пирожков с повидлом. Маша съела один пирожок. (Отв.: 1 бит.)
  4. Бабушка испекла 8 пирожков с капустой, 16 пирожков с повидлом. Маша съела один пирожок. (Отв.: 0,815 бит.)

Ответ : в 1 сообщении.

Обратите внимание на 3 и 4 задачу. Сравните количество информации.

Мы видим, что количество информации достигает максимального значения, если события равновероятны.

Интересно, что рассматриваемые нами формулы классической теории информации первоначально были разработаны для технических систем связи, призванных служить обмену информацией между людьми. Работа этих систем определяется законами физики т.е. законами материального мира. Задача оптимизации работы таких систем требовала, прежде всего, решить вопрос о количестве информации, передаваемой по каналам связи. Поэтому вполне естественно, что первые шаги в этом направлении сделали сотрудники Bell Telephon Companie – X. Найквист, Р. Хартли и К. Шеннон. Приведенные формулы послужили К. Шеннону основанием для исчисления пропускной способности каналов связи и энтропии источников сообщений, для улучшения методов кодирования и декодирования сообщений, для выбора помехоустойчивых кодов, а также для решения ряда других задач, связанных с оптимизацией работы технических систем связи. Совокупность этих представлений, названная К. Шенноном “математической теорией связи”, и явилась основой классической теории информации. (Дополнительный материал можно найти на сайте http://polbu.ru/korogodin_information или прочитав книгу В.И. Корогодин, В.Л. Корогодина. Информация как основа жизни. Формула Шеннона. )

Можно ли применить формулу К. Шеннона для равновероятных событий?

Если p 1 =p 2 =..=p n =1/N, тогда формула принимает вид:

Мы видим, что формула Хартли является частным случаем формулы Шеннона.

V . Закрепление изучаемого материала.

Задача: В корзине лежат 32 клубка красной и черной шерсти. Среди них 4 клубка красной шерсти.

Сколько информации несет сообщение, что достали клубок красной шерсти? Сколько информации несет сообщение, что достали клубок шерсти любой окраски?

Дано: К к =4;N=32

Найти: I к, I

Решение:

Ответ : I к =3 бит; I=0,547 бит

VI . Подведение итогов урока.

  • Объясните на конкретных примерах отличие равновероятного события от неравновероятного?
  • С помощью какой формулы вычисляется вероятность события.
  • Объясните качественную связь между вероятностью события и количеством информации в сообщении об этом событии.
  • В каких случаях применяется формула Шеннона для измерения количества информации.
  • В каком случае количество информации о событии достигает максимального значения.

Урок 2. Применение ЭТ Excel для решения задач на нахождение количества информации

Пояснение: При решении задач на нахождение количества информации учащиеся не вычисляли значение логарифма, т.к. не знакомы с логарифмической функцией. Урок строился таким образом: сначала решались однотипные задачи с составлением формул, затем разрабатывалась табличная модель в Excel, где учащиеся делали вычисления. В конце урока озвучивались ответы к задачам.

Ход урока

I . Постановка целей урока

На этом уроке мы будем решать задачи на нахождение количества информации в сообщении о неравновероятных событиях и автоматизируем процесс вычисления задач данного типа.

Для решения задач на нахождение вероятности и количества информации используем формулы, которые вывели на прошлом уроке:

р i =K i /N; I i =log 2 (1/p i);

II . Решение задач.

Ученикам дается список задач, которые они должны решить.

Задачи решаются только с выводами формул, без вычислений.

Задача №1

В озере обитает 12500 окуней, 25000 пескарей, а карасей и щук по 6250. Какое количество информации несет сообщение о ловле рыбы каждого вида. Сколько информации мы получим, когда поймаем какую-нибудь рыбу?

Дано: К о =12500; К п =25000; К к = К щ =6250

Найти: I о , I п , I к , I щ , I

Решение:

  1. Найдем общее количество рыбы: N = К о +К п +К к +К щ.
  2. Найдем вероятность ловли каждого вида рыбы: p о = К о / N ; p п = К п / N ; p к = p щ = К к / N .
  3. Найдем количество информации о ловле рыбы каждого вида: I о = log 2 (1/ p о ); I п = log 2 (1/ p п ); I к = I щ = log 2 (1/ p к )
  4. Найдем количество информации о ловле рыбы любого вида: I = p о log 2 p о + p п log 2 p п + p к log 2 p к + p щ log 2 p щ

III . Объяснение нового материала.

Задается вопрос ученикам:

1. Какие трудности возникают при решении задач данного типа? (Отв. : Вычисление логарифмов).

2. Нельзя ли автоматизировать процесс решения данных задач? (Отв. : можно, т.к. алгоритм вычислений в этих задачах один и тот же).

3. Какие программы используются для автоматизации вычислительного процесса? (Отв.: ЭТ Excel).

Давайте попробуем сделать табличную модель для вычисления задач данного типа.

Нам необходимо решить вопрос, что мы будем вычислять в таблице. Если вы внимательно присмотритесь к задачам, то увидите, что в одних задачах надо вычислить только вероятность событий, в других количество информации о происходящих событиях или вообще количество информации о событии.

Мы сделаем универсальную таблицу, где достаточно занести данные задачи, а вычисление результатов будет происходить автоматически.

Структура таблицы обсуждается с учениками. Роль учителя обобщить ответы учащихся.

При составлении таблицы мы должны учитывать:

  1. Ввод данных (что дано в условии).
  2. Подсчет общего количества числа возможных исходов (формула N=K 1 +K 2 +…+K i).
  3. Подсчет вероятности каждого события (формула p i = К i /N).
  4. Подсчет количества информации о каждом происходящем событии (формула I i = log 2 (1/p i)).
  5. Подсчет количества информации для событий с различными вероятностями (формула Шеннона).

Прежде чем демонстрировать заполнение таблицы, учитель повторяет правила ввода формул, функций, операцию копирования (домашнее задание к этому уроку).

При заполнении таблицы показывает как вводить логарифмическую функцию. Для экономии времени учитель демонстрирует уже готовую таблицу, а ученикам раздает карточки-памятки по заполнению таблицы.

Рассмотрим заполнение таблицы на примере задачи №1.

Рис. 1. Режим отображения формул

Рис. 2. Отображение результатов вычислений

Результаты вычислений занести в тетрадь.

Если в решаемых задачах количество событий больше или меньше, то можно добавить или удалить строчки в таблице.

VI . Практическая работа .

1 . Сделать табличную модель для вычисления количества информации.

2 . Используя табличную модель, сделать вычисления к задаче №2 (рис.3), результат вычисления занести в тетрадь.

Рис. 3

3 . Используя таблицу-шаблон, решить задачи №3,4 (рис.4, рис.5), решение оформить в тетради.

Рис. 4

Задача №2

В классе 30 человек. За контрольную работу по информатике получено 15 пятерок, 6 четверок, 8 троек и 1 двойка. Какое количество информации несет сообщение о том, что Андреев получил пятерку?

Задача№3

В коробке лежат кубики: 10 красных, 8 зеленых, 5 желтых, 12 синих. Вычислите вероятность доставания кубика каждого цвета и количество информации, которое при этом будет получено.

Задача№4

В непрозрачном мешочке хранятся 10 белых, 20 красных, 30 синих и 40 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика?

VII . Подведение итогов урока.

Учитель оценивает работу каждого ученика. Оценивается не только практическая работа на компьютере, но и оформление решения задачи в тетради.

VIII. Домашняя работа.

1. Параграф учебника «Формула Шеннона», компьютерный практикум после параграфа.

2. Доказать, что формула Хартли – частный случай формулы Шеннона.

Литература:

  1. Соколова О.Л. «Универсальные поурочные разработки по информатике. 10-й класс.» – М.: ВАКО, 2007.
  2. Угринович Н.Д. «Информатика и ИКТ. Профильный уровень. 10 класс» - Бином, Лаборатория знаний, 2007 г.
  3. Семакин И.Г., Хеннер Е.К. «Информатика. Задачник – практикум.» 1 том, - Бином, Лаборатория знаний, 2008 г.

Вероятностный подход к определению количества информации 10 класс (профильный уровень)

РЕШЕНИЕ ЗАДАЧ, В УСЛОВИИ КОТОРЫХ СОБЫТИЯ НЕРАВНОВЕРОЯТНЫ

В корзине лежат 8 черных шаров и 24 белых. Сколько информации несет сообщение о том, что достали черный шар?

В коробке лежат 64 цветных карандаша. Сообщение о том, что достали белый карандаш, несет 4 бита информации. Сколько белых карандашей было в коробке?

В классе 30 человек. За контрольную работу по математике получено 15 пятерок, 6 четверок, 8 троек и 1 двойка. Какое количество информации в сообщении о том, что Андреев получил пятерку?

Известно, что в ящике лежат 20 шаров. Из них – 10 синих, 5 – зеленых, 4 – желтых и 1 красный. Какое количество информации несут сообщения о том, что из ящика случайным образом достали синий шар, зеленый шар, желтый шар, красный шар? Какое количество информации несет сообщение о том, что из ящика случайным образом достали шар любого цвета?

В течение четверти ученик получил 100 оценок. Сообщение о том, что он получил пятерку, несет 2 бита информации. Сколько пятерок ученик получил в течение четверти?

В ящике лежат перчатки (белые и черные). Среди них – 2 пары черных. Сообщение о том, что из ящика достали пару черных перчаток, несет 4 бита информации. Сколько пар белых перчаток было в ящике?

Для ремонта школы использовали белую, синюю и коричневую краски. Израсходовали одинаковое количество банок белой и синей краски. Сообщение о том, что закончилась банка белой краски, несет 2 бита информации. Синей краски израсходовали 8 банок. Сколько банок коричневой краски израсходовали на ремонт школы?

В корзине лежат белые и черные шары. Среди них 18 черных шаров. Сообщение о том, что из корзины достали белый шар, несет 2 бита информации. Сколько всего в корзине шаров?

На остановке останавливаются троллейбусы с разными номерами. Сообщение о том, что к остановке подошел троллейбус с номером N 1, несет 4 бита информации. Вероятность появления на остановке троллейбуса с номером N 2 в два раза меньше, чем вероятность появления троллейбуса с номером N 1. Сколько информации несет сообщение о появлении на остановке троллейбуса с номером N 2?

Просмотр содержимого документа
«Теория»

Урок на тему «Количество информации в сообщении о неравновероятном событии.

Формула Шеннона».

(10 класс, профильный уровень, по учебнику Н.Д.Угриновича)

Цель урока:

Ввести формулу для определения количества информации для неравновероятных событий.

Задачи:

образовательная: познакомить учащихся с формулой для вычисления количества информации в сообщении о неравновероятном событии, формулой Шеннона; определить качественную связь между вероятностью события и количеством информации в сообщении об этом событии; научить решать задачи с использованием формулы Шеннона.

развивающая: способствовать развитию логического мышления (умения сравнивать, делать выводы), познавательной активности.

воспитывающая: прививать навыки самостоятельной работы, работы в парах; воспитывать умение высказывать личное мнение и прислушиваться к мнению других.

Используемые технологии: проблемного обучения.

Оборудование: интерактивная доска, проектор, презентация к уроку.

Ход урока

I. Постановка цели урока.

СЛАЙД 1. Учащимся предлагается устно решить задачу:

Задача :

    Отв.: 3 бит.)

    Вася получил за экзамен оценку 4 (по 5-бальной системе единицы не ставят). (Отв.: 2 бит.)

    Отв.: 1 бит.)

(В четвертом варианте учащиеся сталкиваются с ситуацией, когда события не равновероятны) .

Действительно, далеко не все ситуации имеют одинаковые вероятности реализации. Существует много таких ситуаций, у которых вероятности реализации различаются. Например, если бросают несимметричную монету или "правило бутерброда".

СЛАЙД 2. Как вы думаете, какова же тема сегодняшнего урока? А цель?(исходя из выше обозначенной проблемы учащиеся сами формулируют тему и цель урока )

Ребята, вы абсолютно правы, сегодня на уроке мы должны ответить на вопрос: как вычислить количество информации в сообщении о неравновероятном событии.

I I . Объяснение нового материала.

СЛАЙД 3. Для вычисления количества информации в сообщении о неравновероятном событии используют следующую формулу:

I=log 2 (1/p), где

I – это количество информации,

р – вероятность события.

Вероятность события выражается в долях единицы и вычисляется по формуле:

р=K/N, где

К – величина, показывающая сколько раз произошло интересующее нас событие,

N – общее число возможных исходов какого-то процесса.

СЛАЙД 4. Вернемся к нашей задаче.

К 1 – это количество пирожков с повидлом, К 1 =24

К 2 – количество пирожков с капустой, К 2 =8

N – общее количество пирожков, N = К 1 2, N =24+8=32

Вычислим вероятность выбора пирожка с разной начинкой и количество информации, которое при этом было получено.

Вероятность выбора пирожка с повидлом: р 1 =24/32=3/4=0,75.

Вероятность выбора пирожка с капустой: р 2 =8/32=1/4=0,25.

Обращаем внимание учащихся на то, что в сумме все вероятности дают 1 .

Вычислим количество информации, содержащееся в сообщении, что Маша выбрала пирожок с повидлом:

I 1 =log 2 (1/p 1 ), I 1 = log 2 (1/0,75)= log 2 1,3=1,15470 бит.

Вычислим количество информации, содержащееся в сообщении, если был выбран пирожок с капустой:

I 2 =log 2 (1/p 2 ), I 2 = log 2 (1/0,25)= log 2 4=2 бит.

При сравнении результатов вычислений получается следующая ситуация:

вероятность выбора пирожка с повидлом больше, чем с капустой, а информации при этом получилось меньше. Это не случайность, а закономерность.

Качественную связь между вероятностью события и количеством информации в сообщении об этом событии можно выразить так: чем меньше вероятность некоторого события, тем больше информации содержит сообщение об этом событии.

Вернемся к нашей задаче с пирожками. Мы еще не ответили на вопрос: сколько получим информации при выборе пирожка любого вида ?

СЛАЙД 5. Ответить на этот вопрос нам поможет формула вычисления количества информации для событий с различными вероятностями, которую предложил в 1948 г. американский инженер и математик Клод Элвуд Шеннон.

Если I -количество информации,

N -количество возможных событий,

р i - вероятности отдельных событий, где i принимает значения от 1 до N, то количество информации для событий с различными вероятностями можно определить по формуле:

СЛАЙД 6. можно расписать формулу в таком виде:

Знак минус в формуле не означает, что количество информации в сообщении – отрицательная величина. Объясняется это тем, что вероятность (р), согласно определению, 0. Т.к. Log числа, меньшего 1 (т.е. log p i ) – величина отрицательная, то произведение вероятности на логарифм числа будет положительным.

Рассмотрим формулу на нашем примере:

I = - (р 1 ∙log 2 p 1 + р 2 ∙log 2 p 2),

I = - (0,25∙ log 2 0,25+0,75∙ log 2 0,75)≈-(0,25∙(-2)+0,75∙(-0,42))=0,815 бит

СЛАЙД 7. Теперь ответьте на вопрос задачи, которая была поставлена в начале урока: Какое сообщение содержит большее количество информации?

    В библиотеке 8 шкафов. Книга нашлась в 3-м шкафу; (Отв.: 3 бит.)

    Вася получил за экзамен 3 балла (по 5-бальной системе единицы не ставят). (Отв.: 2 бит.)

    Бабушка испекла 12 пирожков с капустой, 12 пирожков с повидлом. Маша съела один пирожок. (Отв.: 1 бит.)

    Бабушка испекла 8 пирожков с капустой, 24 пирожка с повидлом. Маша съела один пирожок. (Отв.: 0,815 бит.)

Ответ : в 1 сообщении.

Обратите внимание на 3 и 4 задачу. Сравните количество информации.

Мы видим, что количество информации достигает максимального значения, если события равновероятны.

Можно ли применить формулу К. Шеннона для равновероятных событий?

Если p 1 =p 2 =..=p n =1/N, тогда формула принимает вид:

Мы видим, что формула Хартли является частным случаем формулы Шеннона.

III . Закрепление изучаемого материала.

СЛАЙД 8.

Задача №1: (объясняет учитель)

В корзине лежат 32 клубка красной и черной шерсти. Среди них 4 клубка красной шерсти.

Сколько информации несет сообщение, что достали клубок красной шерсти? Сколько информации несет сообщение, что достали клубок шерсти любой окраски?

Дано: К к =4;N=32

Найти: I к, I

Решение:

    Найдем количество клубков черной шерсти:

К ч =N- К к; К ч =32-4=28

    Найдем вероятность доставания клубка каждого вида:

p к = К к /N, p к =4/32=1/8;

p ч = К ч /N, p ч =28/32=7/8;

    Найдем количество информации, которое несет сообщение, что достали клубок красной шерсти:

I к = log 2 (1/(1/ p к)), I к = log 2 (1/1/8)= log 2 8=3 бита

    Найдем количество информации, которое несет сообщение, что достали клубок шерсти любой окраски:

Ответ : I к =3 бит; I=0,547 бит

(Задачи 2-4 учащиеся решают в парах с дальнейшей защитой решения у доски).

Задача №2:

Задача №3: В озере обитает 12500 окуней, 25000 пескарей, а карасей и щук по 6250. Какое количество информации несет сообщение о ловле рыбы каждого вида. Сколько информации мы получим, когда поймаем какую-нибудь рыбу?

Задача №4:

VI. Подведение итогов урока.

СЛАЙД 9. Ответьте на вопросы:

V . Домашнее задание.

СЛАЙД 10. §2.4 стр.111-113. Устно №2.3 стр.114-115. Письменно №2.3 стр.115

ИСТОЧНИКИ:

    Н.Д.Угринович «Информатика и ИКТ». Учебник для10 класса, профильный уровень.

  1. http://marknet.narod.ru/spr/list5.htm Информатика. Справочный материал. Количество информации. Формулы Хартли и Шеннона

  2. Н.Д.Угринович, методическое пособие «Информатика и ИКТ 8 -11 класс»

Просмотр содержимого презентации
«Формула Шеннона»


Какое сообщение содержит большее количество информации?

  • В библиотеке 8 шкафов. Книга нашлась в 3-м шкафу;
  • Вася получил за экзамен оценку 4;
  • Бабушка испекла 12 пирожков с капустой, 12 пирожков с повидлом. Маша съела один пирожок;
  • Бабушка испекла 8 пирожков с капустой, 24 пирожка с повидлом. Маша съела один пирожок.

Company Logo



I = log 2 (1/p) ,

I – количество информации

p – вероятность события

K – сколько раз произошло интересующее нас событие

N – общее число возможных исходов какого-то процесса

Company Logo


I 1 = log 2 (1/0 , 75) = log 2 1 ,3 = 1,15470 бит К-во информации в сообщении, что Маша выбрала пирожок с капустой: I 2 = log 2 (1/p 2) = I 2 = log 2 (1/0 ,2 5) = log 2 4 = 2 бита =1 Чем меньше вероятность некоторого события, тем больше информации содержит сообщение об этом событии Company Logo" width="640"

Вернемся к задаче №4:

Количество пирожков с повидлом: К 1 = 24 N = K 1 + K 2

Количество пирожков с капустой: К 2 = 8 N = 24 + 8 = 32

Вероятность выбора пирожка с повидлом: р 1 = 24/32 = 0,75

Вероятность выбора пирожка с капустой: р 2 = 8/32 = 0,25

К-во информации в сообщении, что Маша выбрала пирожок с повидлом: I 1 = log 2 (1/p 1 ) = I 1 = log 2 (1/0 , 75) = log 2 1 ,3 = 1,15470 бит

К-во информации в сообщении, что Маша выбрала пирожок с капустой: I 2 = log 2 (1/p 2 ) = I 2 = log 2 (1/0 ,2 5) = log 2 4 = 2 бита

Чем меньше вероятность некоторого события, тем больше информации содержит сообщение

об этом событии

Company Logo


Формула Шеннона

I – количество информации,

N – количество возможных событий

p i – вероятности отдельных событий

Клод Элвуд Шеннон ,

1916 – 2001 г.г.

Американский математик

и инженер

Company Logo


Формула Шеннона

Тогда, для нашей задачи:

I = - (р 1 ∙log 2 p 1 + р 2 ∙log 2 p 2 ),

I = - (0,25∙ log 2 0,25+0,75∙ log 2 0,75)≈ -(0,25∙(-2)+0,75∙(-0,42))=0,815 бит

Company Logo


Какое сообщение содержит большее количество информации?

Сообщение

Кол-во информации

В библиотеке 8 шкафов. Книга нашлась в 3-ем шкафу.

3 бита

Вася получил за экзамен 3 балла.

2 бита

Бабушка испекла 12 пирожков с капустой, 12 пирожков с повидлом. Маша съела один пирожок.

1 бит

Бабушка испекла 8 пирожков с капустой, 24 пирожка с повидлом. Маша съела один пирожок.

0,815 бит

Количество информации достигает

максимального значения, если события равновероятны .

Company Logo


Решить задачи:

  • В корзине лежат 32 клубка красной и черной шерсти. Среди них 4 клубка красной шерсти. Сколько информации несет сообщение, что достали клубок красной шерсти? Сколько информации несет сообщение, что достали клубок шерсти любой окраски?
  • В непрозрачном мешочке хранятся 10 белых, 20 красных, 30 синих и 40 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика?
  • В озере обитает 12500 окуней, 25000 пескарей, а карасей и щук по 6250. Какое количество информации несет сообщение о ловле рыбы каждого вида? Сколько информации мы получим, когда поймаем какую–нибудь рыбу?
  • В коробке лежат кубики: 10 красных, 8 зеленых, 5 желтых, 12 синих. Вычислите вероятность доставания кубика каждого цвета и количество информации, которое при этом будет получено.

Company Logo


Ответьте на вопросы:

  • Объясните на конкретных примерах отличие равновероятного события от неравновероятного?
  • С помощью какой формулы вычисляется вероятность события?
  • Объясните качественную связь между вероятностью события и количеством информации в сообщении об этом событии?
  • В каких случаях применяется формула Шеннона для измерения количества информации?
  • В каком случае количество информации о событии достигает максимального значения?

Company Logo


 Домашнее задание:

  • §2.4 стр.111 – 113
  • 2.3 стр. 114 – 115 – устно
  • 2.3 стр. 115 - письменно
В продолжение темы:
Asus

Чтобы строки маркированного списка как-то выделить от основного текста, можно сделать так, чтобы цвет маркеров в списке отличался от цвета текста.По умолчанию стоит черная...

Новые статьи
/
Популярные