Алгоритмика программирование. Алгоритмы в программировании. Принципы разработки алгоритмов и программ

). Разработка программы с помощью такой системы программирования состоит из двух этапов: 1) создание в визуальном режиме элементов графического интерфейса программы; 2) разработка программного кода. Такой подход существенно облегчает создание программ, так как разработка графического интерфейса вручную (в процедурных языках) сложный и трудоёмкий процесс.

Первый шаг к пониманию важности изучения и знания алгоритмов это дать точное определение тому, что понимается под алгоритмом. Алгоритм в программировании- это понятная и точная последовательность действий , записанных на языке программирования.Согласно популярной книге Алгоритмы: построение и анализ (Кормен, Лейзерсон, Ривест, Штайн)"алгоритм (algorithm) - это любая корректно определенная вычислительная процедура, на вход (input) которой подается некоторая величина или набор величин, и результатом выполнения которой является выходная (output) величина или набор значений". Другими словами, алгоритмы похожи на дорожные карты для достижения четко определенной цели. Код, для вычисления членов последовательности Фибоначчи - это реализация конкретного алгоритма. Даже простая функция сложения двух чисел является алгоритмом, хотя и простым.

Для создания алгоритма (программы) необходимо знать:

    полный набор исходных данных задачи (начальное состояние объекта);

    цель создания алгоритма (конечное состояние объекта);

    систему команд исполнителя (то есть набор команд, которые исполнитель понимает и может выполнить).

Полученный алгоритм (программа) должен обладать следующим набором свойств:

    дискретность (алгоритм разбит на отдельные шаги - команды);

    однозначность (каждая команда определяет единственно возможное действие исполнителя);

    понятность (все команды алгоритма входят в систему команд исполнителя);

    результативность (исполнитель должен решить задачу за конечное число шагов).

Большая часть алгоритмов обладает также свойством массовости (с помощью одного и того же алгоритма можно решать множество однотипных задач).

Некоторые алгоритмы, к примеру, для вычисления последовательности Фибоначчи, являются интуитивно понятными и относятся к врожденным навыкам логического мышления и решения задач. Тем не менее, большинству из нас будет не лишним изучить и сложные алгоритмы, чтобы в будущем можно было использовать их в качестве строительных блоков для более эффективного решения логических задач. В действительности можно удивиться, узнав как много сложных алгоритмов используется людьми при проверке электронной почты или прослушивании музыки. В этой статье представлены некоторые основные идеи анализа алгоритмов с практическими примерами, иллюстрирующими важность изучения алгоритмов.

Язык программирования - набор правил записи алгоритмических структур и данных.


Анализ времени выполнения алгоритма

Одним из наиболее важных аспектов алгоритма является его скорость. Часто бывает легко придумать алгоритм решающий задачу, но если алгоритм слишком медленный, то он возвращается на доработку. Поскольку точная скорость алгоритма зависит от того где запускается алгоритм, а также деталей реализации, компьютерные специалисты обычно говорят о времени выполнения относительно входных данных. Например, если вход состоит из N целых чисел, то алгоритм может иметь время выполнения пропорциональное N 2 , что представляется как O(N 2). Это означает, что если вы запустите реализацию алгоритма на компьютере с входом размером в N, то это займет C*N 2 секунд, где C-некоторая константа, которая не меняется с изменением размера входа.

Тем не менее, время выполнения многих сложных алгоритмов зависит не только от размера входных данных, но и от множества других факторов. Например, алгоритм сортировки множества целых чисел может работать намного быстрее, если это множество уже отсортировано. Принято говорить о наихудшем случае выполнения, и среднем случае выполнения. Наихудшее время выполнения - это максимальное время работы алгоритма при самом "плохом" из всех возможных входов. Средний случай выполнения - это среднее время работы алгоритма на всех возможных входах. Из этих двух типов времени выполнения, легче всего рассуждать о наихудшем случае и поэтому его используют чаще в качестве эталона для заданного алгоритма. Процесс определения наихудшего и среднего случая времени выполнения алгоритма может быть достаточно сложным, т.к. обычно невозможно запустить алгоритм для всех возможных входов.

Выше отмечалось, что один и тот же алгоритм может быть записан по-разному. Можно записывать алгоритм естественным языком. В таком виде мы используем рецепты, инструкции и т.п. Для записи алгоритмов, предназначенных формальным исполнителям, разработаны специальные языки программирования . Любой алгоритм можно описать графически в виде блок-схемы . Для этого разработана специальная система обозначений:

Обозначение

Описание

Примечания

Начало и конец алгоритма

Ввод и вывод данных.

Вывод данных иногда обозначают иначе:

Действие

В вычислительных алгоритмах так обозначают присваивание

Развилка

Развилка - компонент, необходимый для реализации ветвлений и циклов

Начало цикла с параметром

Типовой процесс

В программировании - процедуры или подпрограммы

Переходы между блоками

Приведем пример описания алгоритма суммирования двух величин в виде блок-схемы:

Такой способ описания алгоритм наиболее нагляден и понятен человеку. Поэтому, алгоритмы формальных исполнителей обычно разрабатывают сначала в виде блок-схемы, и только затем создают программу на одном из .

Сортировка

Сортировка является хорошим примером алгоритма, который часто используется программистами. Самый простой способ отсортировать группу элементов это начать с удаления наименьшего элемента из группы, и поставить его первым. Затем удаляется второй по величине элемент и ставится вторым и т.д. К сожалению, время работы этого алгоритма составляет O(N 2), а это означает, что потребуется количество времени пропорциональное количеству элементов в квадрате. Если бы нам пришлось сортировать млрд. элементов, то этот алгоритмы бы потребовал 10 18 операций. Если считать что обычные настольные ПК делают примерно 10 9 операций в секунду, то потребуются годы чтобы закончить сортировку этого млрд. элементов.

К счастью существует ряд более совершенных алгоритмов, например, быстрая сортировка (quicksort), пирамидальная сортировка (heapsort) и сортировка слияния(mergesort). Эти алгоритмы имеют время выполнения O(N * Log(N)). Таким образом, число операций необходимых для сортировки млрд. элементов сокращается до таких разумных пределов, что даже самый дешевый настольный ПК способен провести такую сортировку. Вместо млрд. в квадрате операций (10 18) эти алгоритмы требуют только 10 млрд. операций (10 10), т.е. в 100 млн. раз быстрее.

Кратчайший путь

Алгоритмы поиска кратчайшего пути из одной точки в другую исследуются уже на протяжении многих лет. Примеров прикладного применения этих алгоритмов предостаточно, однако для простоты изложения будем придерживаться следующей постановки: требуется найти кратчайший путь из точки А в точку Б в городе с несколькими улицами и перекрестками. Существует много разных алгоритмов для решения этой задачи и все они со своими преимуществами и недостатками. Прежде чем мы углубимся в их изучение, давайте рассмотрим время выполнения простого алгоритма перебором. Если алгоритм рассматривает каждый возможный путь от А до Б (который не образует циклов) он вряд ли закончится при нашей жизни, даже если А и Б находятся в маленьком городке. Время выполнения этого алгоритма является экспоненциальным, что обозначается как O(C N) для некоторого C. Даже для малых значений C, C N становится астрономическим числом, когда N принимает умеренно большое значение.

Один из самых быстрых алгоритмов для решения этой задачи имеет время выполненияO(E+V*Log(V)), где E число дорожных сегментов, а V число пересечений. Алгоритм займет около 2 секунд времени, для поиска кратчайшего пути в городе из 10000 пересечений и 20000 дорожных сегментов (обычно бывает около 2 дорожных сегментов на одно пересечение). Этот алгоритм известен как алгоритм Дейкстры, он является довольно таки сложным и требует использования структуры данных очередь с приоритетом (priority queue). Однако в некоторых случаях даже такое время выполнения является слишком медленным (взять например нахождение кратчайшего пути от Нью-Йорка до Сан-Франциско - в США есть миллионы пересечений), в таких случаях программисты пытаются улучшить время выполнения с помощью так называемой эвристики. Эвристика - это приближенное значение чего-то, что имеет отношение к задаче. В задаче поиска кратчайшего пути, например, может оказаться полезным знать, как далеко находится точка от пункта назначения. Зная это можно разработать более быстрый алгоритм (например алгоритм поиска А* в некоторых случаях работает значительно быстрее чем алгоритм Дейкстры). Такой подход не всегда улучшает время выполнения алгоритма в наихудшем случае, но в большинстве реальных приложений алгоритм начинает работать быстрее.

Приближенные алгоритмы

Иногда даже самый продвинутый алгоритм с самой продвинутой эвристикой работает слишком медленно на самом быстром компьютере. В таких случаях приходится снижать точность конечного результата. Вместо того чтобы пытаться получить кратчайший путь, можно ограничиться путем, который например на 10% больше чем кратчайший путь.

На самом деле есть немало важных задач, для которых известные на сегодня алгоритмы выдают оптимальный результат слишком медленно. Наиболее известная группа из этих задач называется NP (non-deterministic polynomial). Если задача называется NP-полной или NP-трудной, то это означает, что никто не знает достаточно хорошего способа для получения оптимального решения. Кроме того, если кто-то разработает эффективный алгоритм для решения одной NP-трудной задачи, то этот алгоритм можно будет применить ко всем NP-трудным задачам.

Хорошим примером NP-трудной задачи является задача коммивояжёра. Продавец хочет посетить N городов, и он знает, сколько времени занимает перемещение из одного города в другой. Вопрос в том насколько быстро он сможет посетить все города? Самый быстрый из известных алгоритмов для решения этой задачи является слишком медленным - и многие считают, что так будет всегда - поэтому программисты ищут достаточно быстрые алгоритмы, дающие хорошее решение, но часто не оптимальное.

Случайные алгоритмы

Еще один подход, применяемый для решения некоторых задач, заключается в том, чтобы сделать алгоритм случайным. Данный подход не улучшает время алгоритма в худшем случае, но довольно часто хорошо работает в среднем случае. Алгоритм быстрой сортировки является хорошим примером использования рандомизации. В худшем случае, алгоритм быстрой сортировки сортирует группу элементов за O(N 2), где N количество элементов. Если в этом алгоритме использовать рандомизацию, то шансы на худший случай становятся незначительно малыми, и в среднем случае алгоритм быстрой сортировки работает за время O(N*Log(N)). Другие алгоритмы даже в худшем случае гарантируют время работы O(N*Log(N)), однако они медленнее в среднем случае. Хотя оба алгоритма имеют время работы пропорциональное N*Log(N), алгоритм быстрой сортировки имеет более меньший постоянный коэффициент (constant factor) - т.е. он требует C*N*Log(N), в то время как другие алгоритмы требуют более 2*C*N*Log(N) операций.

Другой алгоритм, использующий случайные числа ищет медиану для группы чисел и его время работы в среднем случае составляет O(N). Это намного быстрее по сравнению с алгоритмом, который сортирует числа и выбирает среднее, и работает за O(N*Log(N)). Существуют детерминированные алгоритмы (не случайные) которые позволяют найти медиану за время O(N), однако случайный алгоритм проще для понимания и часто работает быстрее этих детерминированных алгоритмов.

Основная идея алгоритма поиска медианы это выбрать среди чисел случайное, и посчитать, сколько чисел в группе меньше чем выбранное число. Допустим, есть N чисел, K из них меньше или равно выбранному числу. Если K меньше чем половина N, тогда мы знаем что медиана это (N/2-K)-е число которое больше чем случайно выбранное число, так что мы отбрасываем K чисел меньших или равных случайному числу. Теперь допустим мы хотим найти (N/2-K)-е наименьшее число, вместо медианы. Алгоритм такой же, мы просто случайно выбираем число и повторяем описанные шаги.

Сжатие

Еще один класс алгоритмов предназначен для сжатия данных. Этот алгоритм не имеет ожидаемого результата (как например, алгоритм сортировки), но вместо этого делается оптимизация по некоторым критериям. В случае сжатия данных, алгоритм (например, LZW) пытается сделать так чтобы данные занимали как можно меньше байтов, но в то же время, чтобы можно было распаковывать их до первоначальной формы. В некоторых случаях этот тип алгоритмов использует те же методы что и другие алгоритмы, что приводит к хорошему результату, но неоптимальному. Например, JPG и MP3 сжимают данные таким образом, что конечный результат получается более низкого качества, чем оригинал, однако и размер меньше. MP3 сжатие не сохраняет каждую особенность оригинального аудио файла, но пытается сохранить достаточно деталей, чтобы обеспечить приемлемое качество и в то же время значительно сократить размер файла. Формат JPG следует тому же принципу, но детали существенно отличаются, т.к. целью является сжатие изображения, а не аудио.

Зачем нужно знать всякие алгоритмы

Чтобы использовать алгоритмы должным образом, важно знать все упомянутые типы алгоритмов. Если вам придется разрабатывать важную часть программного обеспечения, то вы должны быть в состоянии оценить скорость работы вашего алгоритма. Точность вашей оценки зависит от того насколько вы владеете анализом времени исполнения алгоритмов. Кроме этого, необходимо знать детали алгоритмов, что позволит предсказывать особые случаи, в которых программа не будет работать быстро, или будет давать неприемлемые результаты.

Конечно, будут моменты, когда вы будете натыкаться на ранее не изучавшиеся проблемы. В таких случаях нужно придумать новый алгоритм, или по-новому применить старый алгоритм. Чем больше вы знаете об алгоритмах, тем больше у вас шансов найти хорошее решение проблемы. Во многих случаях новая задача легко сводится к старой, но для этого нужно иметь фундаментальное понимание старых задач.

В качестве примера можно рассмотреть, как работают сетевые коммутаторы. Коммутатор имеет N подключенных к нему кабелей, и принимает пакет данных, поступающих по этим кабелям. Коммутатор должен сначала проанализировать пакеты, а затем отправить их обратно по правильному кабелю. Коммутатор также как и компьютер работает в дискретном режиме - пакеты отправляются дискретными интервалами, а не непрерывно. Быстрый коммутатор стремится послать, как можно больше пакетов в течение каждого интервала иначе они накопятся и коммутатор "упадет". Цель алгоритма отправлять максимальное количество пакетов в течение каждого интервала, а также обеспечить порядок, при котором пакеты, пришедшие раньше других отправлялись тоже раньше других. В этом случае оказывается, что для решения этой задачи подходит алгоритм известный как "stable matching", хотя на первый взгляд это может быть не очевидно. Такие связи между задачей и решением можно обнаружить только с помощью уже имеющихся алгоритмических знаний.

Реальные примеры

Примеров решений реальных задач требующих новейших алгоритмов предостаточно. Почти все, что вы делаете на компьютере зависит от алгоритмов, которые кто-то очень долго разрабатывал. Даже самых простых программ не существовало бы без алгоритмов, которые работают "за сценой" управляя памятью и загружая данные с жесткого диска.

Существуют десятки примеров применения сложных алгоритмов, но обсудим две задачи, решение которых требует таких же навыков, как для решения некоторых задач на TopCoder. Первая задача известна как задача о максимальном потоке, а вторая связана с динамическим программированием - методом который часто позволяет решать задачи с казалось бы невозможной молниеносной скоростью.

Алгоритм поиска максимального потока

Задача поиска максимального потока состоит в том, чтобы посредством имеющейся сети наилучшим образом переместить что-то из одного места в другое. Конкретно такая проблема впервые возникла в 1950-х в связи с железнодорожными путями Советского Союза. США хотели знать, как быстро Советский Союз может подвозить материалы к государствам-сателлитам в Восточной Европе через свою сеть железных дорог.

Кроме того США хотели знать какую часть рельсов можно наиболее легко уничтожить чтобы отрезать государства-сателлиты от остальной части Советского Союза. Оказалось, что эти две задачи тесно связаны и что решение задачи поиска максимального потока также решает задачу о минимальном разрезе, что, в конечном счете, позволит выяснить самый дешевый способ отрезать Советский Союз от своих спутников.

Первый эффективный алгоритм для поиска максимального потока был придуман учеными Фордом и Фалкерсоном. Алгоритм впоследствии был назван алгоритмом Форда - Фалкерсона и является одним из наиболее известных алгоритмов в области компьютерной науки. В последние 50 лет алгоритм претерпел ряд улучшений, что сделало его быстрее (правда, некоторые из этих улучшений устрашают своей сложностью).

Поскольку задача была четко поставлена, обнаружилось множество различных применений. Алгоритм напрямую связан с Интернетом, где важно транспортировать максимум данных из одной точки в другую. Задача также возникает во множестве бизнес-процессов, и является важной частью исследования операций. Например, если есть N сотрудников и N задач, которые должны быть сделаны, но не каждый сотрудник может справиться с каждой задачей, то поиск максимального потока выдаст решение, как назначить N сотрудников на задачи таким образом, чтобы каждая задача была выполнена при условии что это возможно. Задача Graduation из TopCoder SRM 200является хорошим примером задачи на поиск максимального потока.

Сравнение последовательностей

Многим кодерам за всю свою карьеру ни разу не приходилось реализовывать алгоритм, использующий динамическое программирование. Тем не менее, динамическое программирование применяется в ряде важных алгоритмов. Один из алгоритмов это нахождение различий между двумя последовательностями, который большинство программистов наверняка использовали, хотя возможно и не разбирались в нем. Этот алгоритм вычисляет минимальное количество вставок, удалений, редактирований необходимых для преобразования последовательность A в последовательность B.

Например, рассмотрим последовательности "AABAA" и "AAAB". Для преобразования первой последовательности во вторую самое простое, что нужно сделать это удалить B в середине и изменить последнюю A на B. Этот алгоритм имеет множество применений, включая некоторые задачи связанные с ДНК и обнаружением плагиата. Однако многие программисты используют его в основном для сравнения версий одного и того же файла с исходным кодом. Если элементы последовательности это строки в файле, тот этот алгоритм позволяет узнать какие строки надо удалить, вставить, изменить чтобы преобразовать одну версию файла в другую.

Без динамического программирования приходится перебирать экспоненциальное число преобразований, чтобы перейти от одной последовательности к другой. Однако динамическое программирование сокращает время выполнения алгоритма до O(N*M), где N и M количество элементов в двух последовательностях.

Заключение

Сколько существует различных задач, столько существует и различных алгоритмов для их решения. Тем не менее есть большая вероятность того что задача которую вы пытаетесь решить в некотором смысле похожа на другую задачу. Развивая глубокое понимание широкого диапазона алгоритмов, вы сможете выбрать верный алгоритм и применить его для решения задачи. Кроме того решение задач в соревнованиях на TopCoder поможет вам отточить свои навыки в этой области. Многие из этих задач кажутся искусственными и не реалистичными, но они требуют такого, же набора алгоритмических знаний который требуется каждый день в реальном мире.

Курс знакомит слушателей с базовыми структурами данных и алгоритмами, знание которых необходимо для эффективного решения разнообразных задач программирования. Авторы курса занимаются поиском и подготовкой одаренных в области информатики и программирования студентов и школьников. Под их руководством студенческие команды многократно становились чемпионами России по программированию, чемпионами мира и Европы.

О курсе

Курс посвящен изучению базовых алгоритмов и структур данных, знание которых необходимо для эффективного решения разнообразных задач программирования. Рассматриваются различные алгоритмы сортировки, линейные структуры данных, такие как очереди и списки, алгоритмы и структуры данных для эффективного поиска и хранения информации - сбалансированные деревья поиска и хеши, а также алгоритмы поиска подстрок.

Цель курса - получение базовых знаний об основных алгоритмах и структурах данных, используемых для хранения и поиска информации.В курсе используется система автоматического тестирования программ, обеспечивающая объективную оценку корректности выполнения заданий по программированию.

После прохождения курса обучающиеся приобретут навыки анализа и реализации базовых алгоритмов программирования и структур данных, а также проектирования и разработки средств реализации прикладных информационных технологий.

Прохождение курса «Алгоритмы программирования и структуры данных» позволит существенно повысить продуктивность и конкурентоспособность слушателей при разработке программного обеспечения.

Формат

В состав курса входят видеолекции, опросы по материалам лекций и практические задания по программированию, предполагающие самостоятельную реализацию изучаемых в курсе алгоритмов и структур данных на одном из предложенных современных языков программирования. Курс рассчитан на десять недель. Средняя недельная нагрузка на обучающегося - 14 часов. Общая трудоемкость курса составляет четыре зачетных единицы.

Информационные ресурсы

Для прохождения курса и выполнения всех предложенных заданий достаточно материалов видеолекций. Однако для углубления знаний по изучаемой тематике можно воспользоваться следующими дополнительными источниками:

  1. Кормен T., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ. - М.: Вильямс, 2012.
  2. Ахо А., Хопкрофт Д., Ульман Д. Структуры данных и алгоритмы. - М. : Вильямс, 2007.
  3. Онлайн-конспекты лекций по дискретной математике, алгоритмам и структурам данных, читаемых на кафедре компьютерных технологий Университета ИТМО.

Требования

Для успешного освоения курса необходимы знание основ дискретной математики, умение писать программы среднего размера на объектно-ориентированном языке программирования.

Для прохождения курса требуется любой общедоступный компилятор одного из следующих языков программирования:

  • Java: версия 8 (ссылка для скачивания на сайте Oracle)
  • C, C++: MinGW версии 5.1 (для , для Linux можно использовать GCC аналогичной версии), а также Microsoft Visual Studio C++ 2013 (скачать Visual Studio Express можно ).
  • C#: Microsoft Visual Studio C# 2013 (скачать Visual Studio Express можно ).
  • Python: версия 3.5 (ссылка для скачивания на сайте python.org)
  • Scala: версия 2.11 (ссылка для скачивания на сайте scala-lang.org)
  • Kotlin: версия 1.0 (ссылки на инструкции по установке компилятора , плагинов в IntelliJ IDEA и в Eclipse).

Программа курса

В курсе рассматриваются следующие темы:

  1. Оценка времени работы алгоритмов
  2. Алгоритмы сортировки, основанные на сравнении (сортировка слиянием, быстрая сортировка, нижняя оценка на время работы алгоритмов сортировки)
  3. Алгоритмы сортировки с линейным временем выполнения (сортировка подсчетом, цифровая сортировка, карманная сортировка)
  4. Элементарные структуры данных (стек, очередь, связанные списки)
  5. Алгоритмы, основанные на двоичной куче (сортировка кучей, очередь с приоритетами)
  6. Введение в алгоритмы поиска (двоичный поиск в отсортированном массиве, двоичное дерево поиска)
  7. Сбалансированные деревья поиска (обзор сбалансированных деревьев, АВЛ-дерево, Splay-дерево)
  8. Хеширование (хеш-таблицы с закрытой и открытой адресацией)
  9. Введение в поиск подстрок (простейший алгоритм поиска подстрок, алгоритм Рабина-Карпа)
  10. Поиск подстрок (алгоритм Кнута-Морриса-Пратта, Z-функция, алгоритм Бойера-Мура)

Каждая тема предполагает изучение в течение одной недели. На каждой неделе выдаются задания по программированию, предполагающие самостоятельную реализацию изучаемых в курсе алгоритмов и структур данных.

В курсе имеется два типа дедлайна (предельного срока выполнения оценивающих мероприятий):
– мягкий дедлайн, при котором необходимо выполнить все оценивающие мероприятия текущей недели до ее завершения;
– жесткий дедлайн, при котором на выполнение оценивающих мероприятий после мягкого дедлайна дополнительно выделяется еще две недели, по окончании которых доступ к соответствующим мероприятиям закрывается.

Результаты обучения

  • Умение анализировать и реализовывать базовые алгоритмы программирования и структуры данных
  • Навыки проектирования и разработки средств реализации прикладных информационных технологий
  • Навыки разработки алгоритмов для проведения экспериментальных исследований в области информатики

Формируемые компетенции

  • 09.03.02 Информационные системы и технологии
    1. Способность к проектированию базовых и прикладных информационных технологий (ПК-11)
    2. Способность разрабатывать средства реализации информационных технологий (алгоритмические) (ПК-12)
    3. Готовность участвовать в постановке и проведении экспериментальных исследований (ПК-23)

Аннотация: Предмет науки программирования. Пример и свойства алгоритма. Парадигмы программирования (директивное, объектно-ориентированное и функционально-логическое программирование).

Эта глава, с которой начинается изучение курса, служит двум основным целям:

  • подготовить необходимую теоретическую базу для последующего овладения различными методами обработки информации, навыками программирования в малом и построения правильных эффективных программ;
  • дать минимально необходимые для практического программирования знания о языке Java и предоставить образцы небольших типовых программ.

В процессе знакомства с теоретическим материалом главы может возникнуть ощущение его оторванности от нужд практики - решения конкретных задач на языке Java. С другой стороны, именно решение задач на программирование должно привести к осознанному пониманию того факта, что написать правильную и эффективную программу совсем не так просто, как это кажется на первый взгляд.

Знание необходимых теоретических основ позволит во второй главе перейти к изучению методов построения программ и доказательства их правильности - теории, которая будет применяться для практического написания программ параллельно со знакомством с ней. Таким образом, два кажущиеся совершенно не связанными друг с другом потока изучения материала - теоретический и практический, сольются в один уже в следующей главе. Пока же читателю остается только поверить в то, что знание всего материала первой главы является необходимым условием для успешного перехода к изучению следующей.

И последнее замечание - чисто технологическое. На первой стадии изучения языка Java полезно отвлечься от того факта, что он является объектно-ориентированным, и сосредоточиться на содержательных проблемах корректной реализации алгоритма. Однако это не так просто сделать - написание даже самой простейшей программы на нем невозможно без понимания основных концепций ООП. Для частичного решения этой проблемы используется созданный специально для этих целей класс Xterm , ограждающий начинающего программиста от сложностей реального мира языка Java.

Предмет науки программирования

С давних пор человеку приходится создавать описания последовательностей действий, требуемых для достижения некоторой поставленной цели. Такие описания могут быть рассчитаны на их выполнение людьми или автоматическими устройствами. Тексты, написанные для людей, как правило, обладают известной степенью неопределенности и неформальности. Примером может служить фраза из кулинарного рецепта о щепотке соли. Только весьма опытный человек в состоянии правильно посолить блюдо в соответствии с подобной рекомендацией.

Этот пример вполне объясняет, почему описания последовательности действий, предназначенные для автоматического устройства, должны быть совершенно однозначны и заданы с помощью некоторой формальной системы обозначений. Очень часто создание таких описаний связано со значительными техническими и принципиальными трудностями. Данная проблема стала чрезвычайно актуальной в связи с повсеместным распространением электронных вычислительных машин (ЭВМ), часто используемых в качестве .

Описание последовательности действий, достаточно определенное для того, чтобы ее можно было выполнить при помощи некоторого автоматического устройства называют алгоритмом (algorithm) . Обычно эту последовательность записывают (кодируют) с помощью некоторых формальных обозначений. При этом формальная система, предназначенная для записи алгоритмов, называется алгоритмическим языком , сам текст алгоритма - программой , а процесс его создания - программированием .

Наука программирования (computer science) занимается исследованием свойств алгоритмов и разработкой методов построения программ. По своему положению и используемым методам она является областью прикладной математики. Все попытки подхода к программированию как к технической дисциплине, а к созданию программ как к промышленному производству, неизменно терпели неудачу.

Заметим, что данное выше "определение" алгоритма достаточно расплывчато и, фактически, определением не является. В математике существует несколько вполне четких определений алгоритма, эквивалентных между собой, и большинство из них не слишком трудны для понимания. Все они, однако, требуют хорошего знания определенных областей математики и поэтому в начале мы не будем отвлекаться на (весьма важные и интересные) подробности, необходимые для строгого изложения понятия алгоритма. Вместо этого мы рассмотрим пример алгоритма, а потом перечислим основные свойства, которыми должен обладать любой алгоритм.

Подход, когда некоторое не до конца четко определенное понятие активно используют, в науке весьма типичен. Например, точные определения натуральных и действительных чисел не рассматривают ни только в средней школе, но даже и в большинстве ВУЗов. Более того, говорят, что сороконожка даже ходить разучилась, когда задумалась над тем, в каком порядке она переставляет ноги.

Пример и свойства алгоритма

Пусть нам нужно решить задачу нахождения наименьшего простого делителя натурального числа , большего единицы. Напомним, что простым называется число, не имеющее делителей, отличных от единицы и его самого, причем единица в множество простых чисел не входит. Вот как в этой книге мы будем записывать формулировки задач и их решения:

Задача 1.1 . Придумайте алгоритм, вводящий натуральное число, большее единицы,который находит наименьший простой делитель этого числа.

Алгоритм решения задачи .

Алгоритм П :

П1 : Положить целое число равным двум и перейти на шаг П2.

П2 : Если делится нацело на , то завершить работу алгоритма, выдав в качестве результата ; иначе перейти на шаг П3.

П3 : Увеличить значение на единицу и перейти на шаг П2.

Для того чтобы понять этот алгоритм, надо выступить в роли компьютера (или скорее даже универсального исполнителя команд ), выполняя вручную указанную в нем последовательность действий для некоторых небольших значений . Будем записывать значения величины после каждого шага алгоритма.

k = 3 k = 4 k = 2
П1: i = 2 П1: i = 2 П1: i = 2
П2: i = 2 П2: i = 2 П2: i = 2
П3: i = 3
П2: i = 3

Подобное исследование дает основание полагать, что после завершения работы алгоритма переменная действительно будет содержать наименьший простой делитель исходного числа . В данном случае это не сложно доказать и совершенно строго. Обязательно сделайте это.

Основные свойства любого алгоритма - это конечность, определенность, вход (ввод), выход (вывод) и эффективность. Рассмотрим их последовательно более подробно.

Конечность . Алгоритм должен всегда заканчиваться после выполнения конечного числа шагов. Алгоритм П удовлетворяет этому условию, так как величина вначале меньше , ее значение увеличивается на единицу к каждому очередному выполнению шага П2, и поэтому выполнение алгоритма будет прекращено на шаге П2 при , если - простое число, или ранее при составном .

Определенность . Действия, которые необходимо произвести на каждом шаге, должны быть определены строго и недвусмысленно в каждом возможном случае. В данном примере применена достаточно определенная, хотя и не вполне формальная система обозначений. Чаще алгоритмы записывают с использованием более формальных алгоритмических языков, называемых также языками программирования , в которых каждое утверждение имеет точный смысл.

В настоящее время существует несколько тысяч языков программирования, десятки из них используется весьма активно. Такое большое число языков обусловлено разнообразием областей применения, различием в аппаратуре, для которой пишутся программы, и в уровне подготовки людей, их пишущих, а также существованием нескольких учений о том, как надо писать программы (так называемых парадигм программирования ).

Вход (input) . Алгоритм всегда имеет некоторое (иногда равное нулю) количество входных данных, то есть величин, передаваемых ему до начала работы. В алгоритме П, например, одна входная величина - целое число , большее единицы. Примером алгоритма, имеющего пустое множество входных данных, может служить алгоритм, вычисляющий 1000-е простое число.

Выход (output) . Алгоритм всегда обязан иметь одну или несколько выходных величин. В случае алгоритма П такой величиной является число . Алгоритмы, не имеющие выходных данных, бесполезны на практике, и мы не будем их изучать.

Эффективность . От алгоритма требуется, чтобы он был эффективным. Это означает, что все операции, которые необходимо произвести в алгоритме, должны быть достаточно простыми, чтобы их в принципе можно было выполнить точно и за конечное время с помощью карандаша и бумаги. В алгоритме П выполняются лишь следующие операции: сравниваются два целых числа, одно положительное число делится на другое, переменной присваивается значение целого числа два, ее значение увеличивается на единицу.

Все эти операции являются эффективными в указанном выше смысле, так как целые числа можно записать на бумаге конечным образом и существует по крайней мере по одному способу для деления и сложения двух целых чисел. Но те же самые операции не были бы эффективными, если бы значениями величин, фигурирующих в алгоритме, были бы произвольные действительные числа, выраженные бесконечными десятичными дробями, так как подобные величины нельзя даже записать на бумаге за конечное время.

Из вышесказанного следует, что на ЭВМ практически невозможно работать с действительными числами , что, по всей видимости, может показаться вам неправдоподобным. На самом деле это так. Более того, даже с настоящими целыми числами на компьютере работают не так уж и часто. Обычно вместо множеств целых и действительных чисел приходится работать с их заменителями

Часто появляются статьи вида «нужны ли программисту алгоритмы», и все они имеют примерно одинаковый шаблон. Автор статьи как правило пишет: «Я N лет пишу сайты/скрипты в 1С, и никогда не пользовался алгоритмами или структурами данных. Тут же приводятся в пример красно-чёрные деревья или какие-нибудь другие экзотические структуры, которые в области, в которой работает автор не часто увидишь, если увидишь вообще. Такие статьи сводятся к тому, что в конкретной области программисты не используют сложные структуры данных и не решают NP задач.

Сама постановка такого вопроса в корне не верна. Количество специальностей в индустрии растёт постоянно, и человек, который пишет сайты на.net будет заниматься совсем другими вещами, нежели человек, пишущий драйвера для сенсоров на ARM архитектуре под экзотической ОС. Давайте прежде всего определим, что же такое алгоритм. Неформально Кормен определяет алгоритм как строго определённую процедуру, которая принимает одно или несколько значений как ввод, и возвращает одно или несколько значений как результат. Формально алгоритм определяется в разных моделях вычислений: операции, которые можно выполнить на машине Тьюринга или с помощью лямбда-исчислений. Таким образом фактически любой код, который что-то делает, является алгоритмом. Получается, что вопрос «нужны ли программисту алгоритмы» можно перевести как «нужно ли программисту уметь писать код». Правильно такой вопрос должен звучать что-то вроде: «нужно ли программисту в отрасли Х знать продвинутые алгоритмы и детали теории вычислений».

Если посмотреть на все эти статьи, то можно заметить, что люди, которые их пишут, фактически обижены на университеты за то, что их заставили учить много сложного материала - в виде алгоритмического анализа, сложных алгоритмов и структур данных - который им вроде бы не пригодился. По сути, авторы статей обижены на университеты из-за того, что там не смогли предсказать будущую область работы авторов и дать им только минимально нужный набор навыков. Ведь действительно, чтобы писать простенькие сайты и скрипты, не нужно особого знания алгоритмов и структур данных. Или всё-таки нужно?

Давайте подумаем, что же нужно учить программисту в университете, для того чтобы приобрести необходимые навыки для успешной карьеры. Библиотеки? Фреймворки? Они устаревают, интерфейсы к ним меняются, все они написаны чаще всего под один язык, который студенты могут и не использовать никогда в индустрии. Всех учить писать сайты? Или всех учить писать ОС? Образование должно охватывать как можно большую аудиторию и давать максимально возможный набор навыков. Программист в первую очередь должен уметь анализировать и решать проблемы – это основной навык, которым должны обзавестись выпускники факультетов информатики. Написание кода – это просто необходимый инструмент, который используется для решения задач. Кто может знать какие навыки вам понадобятся в будущем? Таким образом учить теорию – это наиболее оптимально с точки зрения образования. Полученные навыки можно применить в любой области, а выучить библиотеку или фреймворк имея хорошую базу знаний не составит большого труда. Парадоксально то, что люди задающие вопросы про нужность алгоритмов, как правило имеют какие-то знания в этой области. Я не помню ни одного человека, который не имел знаний в области теории вычислений, и с гордостью кричал об этом, утверждая, что ему они не нужны.

Итак, вы абстрактный программист в вакууме, работаете десять с лишним лет клепая сайты и решая простые однотипные задачи клиентов/компании. Вам хорошо и уютно в вашей нише, и только мучительно больно за бесцельно потраченное время в классе по теории вычислений и алгоритмическому анализу, который вам ничего не дал. По утрам закуривая сигарету за чашкой кофе, в глубине философских размышлений о бренности бытия вы задумываетесь: зачем же программистам, не решающим сложных задач, знать алгоритмы и основы анализа. Короткий ответ: чтобы быть квалифицированным специалистом и эффективно использовать доступные инструменты, включая язык, на котором вы пишите. Теория алгоритмов и анализа учит не только экзотические алгоритмы и структуры данных в виде АВЛ и красно-чёрных деревьев. Она также даёт представления о том, как эффективно организовать данные, как писать код с максимальной производительностью, где в системе возможно бутылочное горлышко и как с ним бороться. Вас ознакамливают с готовыми решениями, чтобы вы не писали велосипедов, и не бежали в гугл каждый раз, когда нужно сделать что-то нетривиальное.

Знания теории анализа и алгоритмов применяются всеми программистами на самом деле каждый день, просто мы привыкли к этим вещам настолько, что даже не задумываемся над этим. Какую бы задачу вы не решали – будь то простой сайт с выборкой данных из БД, или баш скрипт на сервере, вы будете использовать какие-то структуры данных. Как минимум примитивный массив, а скорее всего и что-то посложнее. Языки дают нам множество различных структур, многие из которых взаимозаменяемы. Часто мы имеем несколько вариаций одного абстрактного типа с разными реализациями. Например, в С++ есть структуры данных vector и list. Чем они отличаются, и какие будут преимущества и недостатки использования одного или другого? Как в С++ реализована map, и чем она отличается от multimap? Как реализован list в Python – через массив или связным списком и как лучше всего с ним работать? Почему в C# нежелательно использовать ArrayList, а вместо него использовать List? Как реализован SortedDictionary и как он повлияет на исполнение программы если будет использован вместо Dictionary? Как работает continuation, когда её нужно использовать, и будут ли какие-то побочные эффекты при её использовании? Когда вы в последний раз использовали каррированные функции, которые есть почти в каждом языке? Если вы думаете, что map в С++ реализована как хэш-таблица, вы ошибаетесь. Она реализована на красно-чёрных деревьях, а хэш-таблицей реализована unordered_map. Отдельно стоит упомянуть динамическое программирование. Понимание что это такое, как можно оптимально переписать рекурсивные функции и что такое мемоизация, часто поможет избежать выстрела себе в ногу. Таким образом просто чтобы полноценно и эффективно использовать язык, на котором вы пишите, уже нужно иметь хотя бы поверхностные знания о структурах данных, что они из себя представляют, и как могут повлиять на исполнение вашей программы.

А как же библиотеки? Ведь они решают столько задач! Чтобы рационально использовать библиотеки, их тоже нужно понимать. Во-первых, функции в библиотеки могут иметь побочные эффекты или поведение, которые вы не будете знать без понимания алгоритмов. Получив баг в таком случае можно долго и упорно пытаться его поймать и решить, когда можно было избежать. Во-вторых, различные инструменты и библиотеки часто нужно «настраивать» - говорить им какие алгоритмы, структуры данных и технологии использовать внутри. Без элементарных знаний вам придётся либо идти читать маны, либо выбирать наугад. В-третьих – есть множество задач, которые нельзя решить простым вызовом API библиотеки или фреймворка. Что вы будете делать в таком случае? Тратить часы на поиски возможных решений и просить помощи у друга? В-четвёртых – множество задач решается очень просто несколькими строчками кода или встроенными средствами языка. Если для решения каждого чиха вы будете тянуть библиотеку, то ваши программы будут гигантскими монстрами, занимая по сотни мегабайт и больше на диске, отжирая всю память на сервере, и при том имея довольно скудный функционал. Кроме того, наличие кучи подключенных библиотек влечёт за собой проблемы совместимости, и программа может падать случайным образом из-за странного поведения нескольких библиотек в одном проекте. Бездумное использование библиотек может привести к довольно плачевным последствиям, и разработчики, которые умеют только использовать библиотеки, но не способны решить даже простую проблему самостоятельно, никогда не будут ценится, потому что их решения будут неконкурентоспособны.

Со мной работал один программист со стажем больше десяти лет. Однажды нам понадобилась функция, которую использованная нами библиотека на тот момент не поддерживала: примитивный text-wrap в одном из визуальных компонентов. Этот «программист» посмотрел, что стандартными средствами это сделать нельзя, и сразу заявил, что реализация такой функции невозможна. Задачу решил интерн-третьекурсник с аналитическим мозгом, который за два часа написал простой алгоритм и внедрил его в нужный компонент. Другой проект в виде сайта на.net мне достался по наследству. Главная страничка представляла собой несколько маленьких графиков, и загружалась почти 10 секунд. Оказалось, что человек, который изначально делал этот проект, нагородил кучу ужасных конструкций из тройных вложенных циклов, которые долго и печально забирали данные из БД, и потом привязывали их к графикам. После небольшого рефакторинга страница стала грузится почти мгновенно.

Может ли программист обойтись без знаний алгоритмов и теории анализа? Может, и таких «программистов» очень много. Только назвать их программистами можно разве что с большой натяжкой. Ко мне на собеседование приходит очень много программистов, со стажем десять-пятнадцать лет, и толком не понимающих что же они делают и почему. У них своя ниша, они ходят от компании к компании, не задерживаясь в них больше года. Как правило, у них есть небольшой набор задач, которые они могут решать, и если сделать шаг в сторону, то человек теряется и ему нужно обучить себя новым навыкам. Таких людей приглашают на проект, и от них избавляются как можно быстрее, потому что они теряют кучу времени, изобретая велосипеды и читая маны чтобы узнать то, что уже должны были знать из университета. У них как правило нет особо никакой карьеры и нестабильный заработок.

В итоге, для чего нужно знать алгоритмы и теорию анализа, если можно выполнять работу и без этих знаний? Чтобы быть квалифицированным специалистом в своей профессии, иметь карьерный рост и уважение коллег. Чтобы эффективно решать поставленные задачи и не изобретать велосипедов. Чтобы не писать монстров с огромным количеством сторонних библиотек, которые занимают сотни мегабайт на диске от отжирают кучу памяти на сервере и регулярно падают по случайной причине в зависимости от фазы луны. Чтобы эффективно и с максимальными возможностями использовать язык, на которым вы пишете. Чтобы принимать информированные и осмысленные решения по выбору библиотеки и технологии для решения проблемы. Если же ваша работа заключается в написание SQL запроса и вбивание команды в консоль, то хочу вас огорчить: вы не программист, вы – пользователь, вам действительно не нужны алгоритмы и иже с ним, и вы зря потратили время в университете потому что для такой работы достаточно закончить курсы или прочитать пару вводных книжек самостоятельно.

2.4.1. Понятие базовых алгоритмов

2.4.2. Алгоритмы линейной структуры

2.4.3. Базовые алгоритмы разветвляющихся структур и примеры их программирования

2.4.4. Базовые алгоритмы регулярных циклических структур и примеры их программирования

2.4.5. Базовые алгоритмы итеративных циклических структур и примеры их программирования

2.4.6. Базовые алгоритмы обработки одномерных массивов

2.4.7. Базовые алгоритмы обработки двумерных массивов

2.4.8. Контрольные вопросы по теме «Базовые алгоритмы и примеры их реализации»

2.4.9. Тестовые задания по теме «Базовые алгоритмы и примеры их реализации»

2.4.1. Понятие базовых алгоритмов

Базовые алгоритмы обработки данных являются результатом исследований и разработок, проводившихся на протяжении десятков лет. Но они, как и прежде, продолжают играть важную роль в расширяющемся применении вычислительных процессов.

К базовым алгоритмам императивного программирования можно отнести:

    Простейшие алгоритмы, реализующие базовые алгоритмические структуры.

    Алгоритмы работы со структурами данных . Они определяют базовые принципы и методологию, используемые для реализации, анализа и сравнения алгоритмов. Позволяют получить представление о методах представления данных. К таким структурам относятся связные списки и строки, деревья, абстрактные типы данных, такие как стеки и очереди.

    Алгоритмы сортировки , предназначенные для упорядочения массивов и файлов, имеют особую важность. С алгоритмами сортировки связаны, в частности, очереди по приоритету, задачи выбора и слияния.

    Алгоритмы поиска , предназначенные для поиска конкретных элементов в больших коллекциях элементов. К ним относятся основные и расширенные методы поиска с использованием деревьев и преобразований цифровых ключей, в том числе деревья цифрового поиска, сбалансированные деревья, хеширование, а также методы, которые подходят для работы с очень крупными файлами.

    Алгоритмы на графах полезны при решении ряда сложных и важных задач. Общая стратегия поиска на графах разрабатывается и применяется к фундаментальным задачам связности, в том числе к задаче отыскания кратчайшего пути, построения минимального остовного дерева, к задаче о потоках в сетях и задаче о паросочетаниях. Унифицированный подход к этим алгоритмам показывает, что в их основе лежит одна и та же процедура, и что эта процедура базируется на основном абстрактном типе данных очереди по приоритету.

    Алгоритмы обработки строк включают ряд методов обработки (длинных) последователей символов. Поиск в строке приводит к сопоставлению с эталоном, что в свою очередь ведет к синтаксическому анализу. К этому же классу задач можно отнести и технологии сжатия файлов.

2.4.2. Алгоритмы линейной структуры

Пример 2.4.2-1.

где x = -1,4; y = 0,8;переменныеkиm– целого типа, остальные переменные - вещественного типа;[n]- целая часть числаn.

Схема алгоритма и программы на языках QBasic, Pascal, C++ , представлены на рис. 2.4.2-1.

Следует обратить внимание на то, что целая переменная k получила округленное значениеn , а целая переменнаяm - усе­ченное с помощью функцииFIX() до целой части значенияn.

Пример 2.4.2-2 . Вычислить и вывести на экран значения следующих величин:

где x = 2.9512; y = 0.098633;переменныеiиj– целого типа; остальные переменные – вещественного типа.

Схема алгоритма и коды программ представлены на рис. 3.2.1-2.

Рис. 2.4.2-2.

Результаты выполнения программы при указанных выше значе­ниях исходных данных имеют следующий вид:

Пример 2.4.2-3. Вычислить и вывести на экран значение первой космической скорости.

Проведем формализацию. Минимальная скорость, при которой космический аппарат в гравитационном поле Земли может стать искусственным спутником, равна

где – гравитационная постоянная; M – масса Земли;
– расстояние от центра Земли до космического аппарата.

Схема алгоритма и коды программ представлены на рис. 3.2.1-3.

Рис. 2.4.2-3.

Результаты выполнения программы при указанных выше значе­ниях исходных данных имеют следующий вид.

В продолжение темы:
Роутеры

Сохранение для игры Grand Theft Auto 5 PC - Сейв обновлен 06.05.2015 - Игра пройдена на 90% - Полностью пройдена сюжетная линия (69 из 69 заданий) - После последнего...